import torch import torch.nn as nn class SpaceToDepth(nn.Module): def __init__(self, block_size=4): super().__init__() assert block_size == 4 self.bs = block_size def forward(self, x): N, C, H, W = x.size() x = x.view(N, C, H // self.bs, self.bs, W // self.bs, self.bs) # (N, C, H//bs, bs, W//bs, bs) x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # (N, bs, bs, C, H//bs, W//bs) x = x.view(N, C * (self.bs ** 2), H // self.bs, W // self.bs) # (N, C*bs^2, H//bs, W//bs) return x @torch.jit.script class SpaceToDepthJit(object): def __call__(self, x: torch.Tensor): # assuming hard-coded that block_size==4 for acceleration N, C, H, W = x.size() x = x.view(N, C, H // 4, 4, W // 4, 4) # (N, C, H//bs, bs, W//bs, bs) x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # (N, bs, bs, C, H//bs, W//bs) x = x.view(N, C * 16, H // 4, W // 4) # (N, C*bs^2, H//bs, W//bs) return x class SpaceToDepthModule(nn.Module): def __init__(self, no_jit=False): super().__init__() if not no_jit: self.op = SpaceToDepthJit() else: self.op = SpaceToDepth() def forward(self, x): return self.op(x) class DepthToSpace(nn.Module): def __init__(self, block_size): super().__init__() self.bs = block_size def forward(self, x): N, C, H, W = x.size() x = x.view(N, self.bs, self.bs, C // (self.bs ** 2), H, W) # (N, bs, bs, C//bs^2, H, W) x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # (N, C//bs^2, H, bs, W, bs) x = x.view(N, C // (self.bs ** 2), H * self.bs, W * self.bs) # (N, C//bs^2, H * bs, W * bs) return x