from torch import nn as nn import torch.nn.functional as F from .create_act import create_act_layer from .helpers import make_divisible class SEModule(nn.Module): """ SE Module as defined in original SE-Nets with a few additions Additions include: * min_channels can be specified to keep reduced channel count at a minimum (default: 8) * divisor can be specified to keep channels rounded to specified values (default: 1) * reduction channels can be specified directly by arg (if reduction_channels is set) * reduction channels can be specified by float ratio (if reduction_ratio is set) """ def __init__(self, channels, reduction=16, act_layer=nn.ReLU, gate_layer='sigmoid', reduction_ratio=None, reduction_channels=None, min_channels=8, divisor=1): super(SEModule, self).__init__() if reduction_channels is not None: reduction_channels = reduction_channels # direct specification highest priority, no rounding/min done elif reduction_ratio is not None: reduction_channels = make_divisible(channels * reduction_ratio, divisor, min_channels) else: reduction_channels = make_divisible(channels // reduction, divisor, min_channels) self.fc1 = nn.Conv2d(channels, reduction_channels, kernel_size=1, bias=True) self.act = act_layer(inplace=True) self.fc2 = nn.Conv2d(reduction_channels, channels, kernel_size=1, bias=True) self.gate = create_act_layer(gate_layer) def forward(self, x): x_se = x.mean((2, 3), keepdim=True) x_se = self.fc1(x_se) x_se = self.act(x_se) x_se = self.fc2(x_se) return x * self.gate(x_se) class EffectiveSEModule(nn.Module): """ 'Effective Squeeze-Excitation From `CenterMask : Real-Time Anchor-Free Instance Segmentation` - https://arxiv.org/abs/1911.06667 """ def __init__(self, channels, gate_layer='hard_sigmoid'): super(EffectiveSEModule, self).__init__() self.fc = nn.Conv2d(channels, channels, kernel_size=1, padding=0) self.gate = create_act_layer(gate_layer, inplace=True) def forward(self, x): x_se = x.mean((2, 3), keepdim=True) x_se = self.fc(x_se) return x * self.gate(x_se)