""" Bottleneck Self Attention (Bottleneck Transformers) Paper: `Bottleneck Transformers for Visual Recognition` - https://arxiv.org/abs/2101.11605 @misc{2101.11605, Author = {Aravind Srinivas and Tsung-Yi Lin and Niki Parmar and Jonathon Shlens and Pieter Abbeel and Ashish Vaswani}, Title = {Bottleneck Transformers for Visual Recognition}, Year = {2021}, } Based on ref gist at: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2 This impl is a WIP but given that it is based on the ref gist likely not too far off. Hacked together by / Copyright 2021 Ross Wightman """ from typing import List import torch import torch.nn as nn import torch.nn.functional as F from .helpers import to_2tuple from .weight_init import trunc_normal_ def rel_logits_1d(q, rel_k, permute_mask: List[int]): """ Compute relative logits along one dimension As per: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2 Originally from: `Attention Augmented Convolutional Networks` - https://arxiv.org/abs/1904.09925 Args: q: (batch, heads, height, width, dim) rel_k: (2 * width - 1, dim) permute_mask: permute output dim according to this """ B, H, W, dim = q.shape x = (q @ rel_k.transpose(-1, -2)) x = x.reshape(-1, W, 2 * W -1) # pad to shift from relative to absolute indexing x_pad = F.pad(x, [0, 1]).flatten(1) x_pad = F.pad(x_pad, [0, W - 1]) # reshape and slice out the padded elements x_pad = x_pad.reshape(-1, W + 1, 2 * W - 1) x = x_pad[:, :W, W - 1:] # reshape and tile x = x.reshape(B, H, 1, W, W).expand(-1, -1, H, -1, -1) return x.permute(permute_mask) class PosEmbedRel(nn.Module): """ Relative Position Embedding As per: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2 Originally from: `Attention Augmented Convolutional Networks` - https://arxiv.org/abs/1904.09925 """ def __init__(self, feat_size, dim_head, scale): super().__init__() self.height, self.width = to_2tuple(feat_size) self.dim_head = dim_head self.scale = scale self.height_rel = nn.Parameter(torch.randn(self.height * 2 - 1, dim_head) * self.scale) self.width_rel = nn.Parameter(torch.randn(self.width * 2 - 1, dim_head) * self.scale) def forward(self, q): B, num_heads, HW, _ = q.shape # relative logits in width dimension. q = q.reshape(B * num_heads, self.height, self.width, -1) rel_logits_w = rel_logits_1d(q, self.width_rel, permute_mask=(0, 1, 3, 2, 4)) # relative logits in height dimension. q = q.transpose(1, 2) rel_logits_h = rel_logits_1d(q, self.height_rel, permute_mask=(0, 3, 1, 4, 2)) rel_logits = rel_logits_h + rel_logits_w rel_logits = rel_logits.reshape(B, num_heads, HW, HW) return rel_logits class BottleneckAttn(nn.Module): """ Bottleneck Attention Paper: `Bottleneck Transformers for Visual Recognition` - https://arxiv.org/abs/2101.11605 """ def __init__(self, dim, dim_out=None, feat_size=None, stride=1, num_heads=4, qkv_bias=False): super().__init__() assert feat_size is not None, 'A concrete feature size matching expected input (H, W) is required' dim_out = dim_out or dim assert dim_out % num_heads == 0 self.num_heads = num_heads self.dim_out = dim_out self.dim_head = dim_out // num_heads self.scale = self.dim_head ** -0.5 self.qkv = nn.Conv2d(dim, self.dim_out * 3, 1, bias=qkv_bias) # NOTE I'm only supporting relative pos embedding for now self.pos_embed = PosEmbedRel(feat_size, dim_head=self.dim_head, scale=self.scale) self.pool = nn.AvgPool2d(2, 2) if stride == 2 else nn.Identity() def reset_parameters(self): trunc_normal_(self.qkv.weight, std=self.qkv.weight.shape[1] ** -0.5) trunc_normal_(self.pos_embed.height_rel, std=self.scale) trunc_normal_(self.pos_embed.width_rel, std=self.scale) def forward(self, x): B, C, H, W = x.shape assert H == self.pos_embed.height assert W == self.pos_embed.width x = self.qkv(x) # B, 3 * num_heads * dim_head, H, W x = x.reshape(B, -1, self.dim_head, H * W).transpose(-1, -2) q, k, v = torch.split(x, self.num_heads, dim=1) attn_logits = (q @ k.transpose(-1, -2)) * self.scale attn_logits = attn_logits + self.pos_embed(q) # B, num_heads, H * W, H * W attn_out = attn_logits.softmax(dim=-1) attn_out = (attn_out @ v).transpose(1, 2).reshape(B, self.dim_out, H, W) # B, dim_out, H, W attn_out = self.pool(attn_out) return attn_out