from dataclasses import dataclass from typing import Dict, Any from torch import nn as nn from timm.scheduler import Scheduler from timm.utils import get_state_dict, unwrap_model from .train_cfg import TrainCfg from .updater import Updater @dataclass class TrainState: model: nn.Module = None train_loss: nn.Module = None eval_loss: nn.Module = None updater: Updater = None lr_scheduler: Scheduler = None model_ema: nn.Module = None train_cfg: TrainCfg = TrainCfg() # FIXME collect & include other cfg like data & model so it's in one spot for checkpoints / logging / debugging? epoch: int = 0 step_count: int = 0 step_count_global: int = 0 def __post_init__(self): assert self.model is not None assert self.updater is not None def state_dict(self, unwrap_fn=unwrap_model): state = dict( # train loop state (counters, etc), saved and restored epoch=self.epoch, step_count=self.step_count, step_count_global=self.step_count_global, # model params / state, saved and restored model=get_state_dict(self.model, unwrap_fn), model_ema=None if self.model_ema is None else get_state_dict(self.model_ema, unwrap_fn), # configuration, saved but currently not restored, determined by args / config file for each run train_cfg=vars(self.train_cfg) ) # FIXME include lr_scheduler state? state.update(self.updater.state_dict()) # updater (optimizer, scaler,e tc) state added to state return state def load_state_dict(self, state_dict, unwrap_fn=unwrap_model, load_opt=True): # restore train loop state self.epoch = state_dict['epoch'] self.step_count = state_dict['step_count'] self.step_count_global = state_dict['step_count_global'] # restore model params / state unwrap_fn(self.model).load_state_dict(state_dict.get('model')) if 'model_ema' in state_dict and self.model_ema is not None: unwrap_fn(self.model_ema).load_state_dict(state_dict.get('model_ema')) # restore optimizer state if load_opt: self.updater.load_state_dict(state_dict)