""" Attention Pool 2D Implementations of 2D spatial feature pooling using multi-head attention instead of average pool. Based on idea in CLIP by OpenAI, licensed Apache 2.0 https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py Hacked together by / Copyright 2021 Ross Wightman """ from typing import Union, Tuple import torch import torch.nn as nn from .helpers import to_2tuple from .pos_embed_sincos import apply_rot_embed, RotaryEmbedding from .weight_init import trunc_normal_ class RotAttentionPool2d(nn.Module): """ Attention based 2D feature pooling w/ rotary (relative) pos embedding. This is a multi-head attention based replacement for (spatial) average pooling in NN architectures. Adapted from the AttentionPool2d in CLIP w/ rotary embedding instead of learned embed. https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py NOTE: While this impl does not require a fixed feature size, performance at differeing resolutions from train varies widely and falls off dramatically. I'm not sure if there is a way around this... -RW """ def __init__( self, in_features: int, out_features: int = None, embed_dim: int = None, num_heads: int = 4, qkv_bias: bool = True, ): super().__init__() embed_dim = embed_dim or in_features out_features = out_features or in_features self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias) self.proj = nn.Linear(embed_dim, out_features) self.num_heads = num_heads assert embed_dim % num_heads == 0 self.head_dim = embed_dim // num_heads self.scale = self.head_dim ** -0.5 self.pos_embed = RotaryEmbedding(self.head_dim) trunc_normal_(self.qkv.weight, std=in_features ** -0.5) nn.init.zeros_(self.qkv.bias) def forward(self, x): B, _, H, W = x.shape N = H * W x = x.reshape(B, -1, N).permute(0, 2, 1) x = torch.cat([x.mean(1, keepdim=True), x], dim=1) x = self.qkv(x).reshape(B, N + 1, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) q, k, v = x[0], x[1], x[2] qc, q = q[:, :, :1], q[:, :, 1:] sin_emb, cos_emb = self.pos_embed.get_embed((H, W)) q = apply_rot_embed(q, sin_emb, cos_emb) q = torch.cat([qc, q], dim=2) kc, k = k[:, :, :1], k[:, :, 1:] k = apply_rot_embed(k, sin_emb, cos_emb) k = torch.cat([kc, k], dim=2) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) x = (attn @ v).transpose(1, 2).reshape(B, N + 1, -1) x = self.proj(x) return x[:, 0] class AttentionPool2d(nn.Module): """ Attention based 2D feature pooling w/ learned (absolute) pos embedding. This is a multi-head attention based replacement for (spatial) average pooling in NN architectures. It was based on impl in CLIP by OpenAI https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py NOTE: This requires feature size upon construction and well prevent adaptive sizing of the network. """ def __init__( self, in_features: int, feat_size: Union[int, Tuple[int, int]], out_features: int = None, embed_dim: int = None, num_heads: int = 4, qkv_bias: bool = True, ): super().__init__() embed_dim = embed_dim or in_features out_features = out_features or in_features assert embed_dim % num_heads == 0 self.feat_size = to_2tuple(feat_size) self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias) self.proj = nn.Linear(embed_dim, out_features) self.num_heads = num_heads self.head_dim = embed_dim // num_heads self.scale = self.head_dim ** -0.5 spatial_dim = self.feat_size[0] * self.feat_size[1] self.pos_embed = nn.Parameter(torch.zeros(spatial_dim + 1, in_features)) trunc_normal_(self.pos_embed, std=in_features ** -0.5) trunc_normal_(self.qkv.weight, std=in_features ** -0.5) nn.init.zeros_(self.qkv.bias) def forward(self, x): B, _, H, W = x.shape N = H * W assert self.feat_size[0] == H assert self.feat_size[1] == W x = x.reshape(B, -1, N).permute(0, 2, 1) x = torch.cat([x.mean(1, keepdim=True), x], dim=1) x = x + self.pos_embed.unsqueeze(0).to(x.dtype) x = self.qkv(x).reshape(B, N + 1, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) q, k, v = x[0], x[1], x[2] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) x = (attn @ v).transpose(1, 2).reshape(B, N + 1, -1) x = self.proj(x) return x[:, 0]