# DenseNet **DenseNet** is a type of convolutional neural network that utilises dense connections between layers, through [Dense Blocks](http://www.paperswithcode.com/method/dense-block), where we connect *all layers* (with matching feature-map sizes) directly with each other. To preserve the feed-forward nature, each layer obtains additional inputs from all preceding layers and passes on its own feature-maps to all subsequent layers. The **DenseNet Blur** variant in this collection by Ross Wightman employs [Blur Pooling](http://www.paperswithcode.com/method/blur-pooling) ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('densenet121', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `densenet121`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('densenet121', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/HuangLW16a, author = {Gao Huang and Zhuang Liu and Kilian Q. Weinberger}, title = {Densely Connected Convolutional Networks}, journal = {CoRR}, volume = {abs/1608.06993}, year = {2016}, url = {http://arxiv.org/abs/1608.06993}, archivePrefix = {arXiv}, eprint = {1608.06993}, timestamp = {Mon, 10 Sep 2018 15:49:32 +0200}, biburl = {https://dblp.org/rec/journals/corr/HuangLW16a.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` ``` @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ``` <!-- Type: model-index Collections: - Name: DenseNet Paper: Title: Densely Connected Convolutional Networks URL: https://paperswithcode.com/paper/densely-connected-convolutional-networks Models: - Name: densenet121 In Collection: DenseNet Metadata: FLOPs: 3641843200 Parameters: 7980000 File Size: 32376726 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Block - Dense Connections - Dropout - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Techniques: - Kaiming Initialization - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet ID: densenet121 LR: 0.1 Epochs: 90 Layers: 121 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L295 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/densenet121_ra-50efcf5c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.56% Top 5 Accuracy: 92.65% - Name: densenet161 In Collection: DenseNet Metadata: FLOPs: 9931959264 Parameters: 28680000 File Size: 115730790 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Block - Dense Connections - Dropout - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Techniques: - Kaiming Initialization - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet ID: densenet161 LR: 0.1 Epochs: 90 Layers: 161 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L347 Weights: https://download.pytorch.org/models/densenet161-8d451a50.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.36% Top 5 Accuracy: 93.63% - Name: densenet169 In Collection: DenseNet Metadata: FLOPs: 4316945792 Parameters: 14150000 File Size: 57365526 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Block - Dense Connections - Dropout - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Techniques: - Kaiming Initialization - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet ID: densenet169 LR: 0.1 Epochs: 90 Layers: 169 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L327 Weights: https://download.pytorch.org/models/densenet169-b2777c0a.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.9% Top 5 Accuracy: 93.02% - Name: densenet201 In Collection: DenseNet Metadata: FLOPs: 5514321024 Parameters: 20010000 File Size: 81131730 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Block - Dense Connections - Dropout - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Techniques: - Kaiming Initialization - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet ID: densenet201 LR: 0.1 Epochs: 90 Layers: 201 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L337 Weights: https://download.pytorch.org/models/densenet201-c1103571.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.29% Top 5 Accuracy: 93.48% - Name: densenetblur121d In Collection: DenseNet Metadata: FLOPs: 3947812864 Parameters: 8000000 File Size: 32456500 Architecture: - 1x1 Convolution - Batch Normalization - Blur Pooling - Convolution - Dense Block - Dense Connections - Dropout - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: densenetblur121d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L305 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/densenetblur121d_ra-100dcfbc.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.59% Top 5 Accuracy: 93.2% - Name: tv_densenet121 In Collection: DenseNet Metadata: FLOPs: 3641843200 Parameters: 7980000 File Size: 32342954 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Block - Dense Connections - Dropout - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: tv_densenet121 LR: 0.1 Epochs: 90 Crop Pct: '0.875' LR Gamma: 0.1 Momentum: 0.9 Batch Size: 32 Image Size: '224' LR Step Size: 30 Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L379 Weights: https://download.pytorch.org/models/densenet121-a639ec97.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.74% Top 5 Accuracy: 92.15% -->