""" Sequencer Paper: `Sequencer: Deep LSTM for Image Classification` - https://arxiv.org/pdf/2205.01972.pdf """ # Copyright (c) 2022. Yuki Tatsunami # Licensed under the Apache License, Version 2.0 (the "License"); import math from functools import partial from typing import Tuple import torch import torch.nn as nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, DEFAULT_CROP_PCT from .helpers import build_model_with_cfg, named_apply from .layers import lecun_normal_, DropPath, Mlp, PatchEmbed as TimmPatchEmbed from .registry import register_model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': DEFAULT_CROP_PCT, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.proj', 'classifier': 'head', **kwargs } default_cfgs = dict( sequencer2d_s=_cfg(url="https://github.com/okojoalg/sequencer/releases/download/weights/sequencer2d_s.pth"), sequencer2d_m=_cfg(url="https://github.com/okojoalg/sequencer/releases/download/weights/sequencer2d_m.pth"), sequencer2d_l=_cfg(url="https://github.com/okojoalg/sequencer/releases/download/weights/sequencer2d_l.pth"), ) def _init_weights(module: nn.Module, name: str, head_bias: float = 0., flax=False): if isinstance(module, nn.Linear): if name.startswith('head'): nn.init.zeros_(module.weight) nn.init.constant_(module.bias, head_bias) else: if flax: # Flax defaults lecun_normal_(module.weight) if module.bias is not None: nn.init.zeros_(module.bias) else: nn.init.xavier_uniform_(module.weight) if module.bias is not None: if 'mlp' in name: nn.init.normal_(module.bias, std=1e-6) else: nn.init.zeros_(module.bias) elif isinstance(module, nn.Conv2d): lecun_normal_(module.weight) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm)): nn.init.ones_(module.weight) nn.init.zeros_(module.bias) elif isinstance(module, (nn.RNN, nn.GRU, nn.LSTM)): stdv = 1.0 / math.sqrt(module.hidden_size) for weight in module.parameters(): nn.init.uniform_(weight, -stdv, stdv) elif hasattr(module, 'init_weights'): module.init_weights() def get_stage( index, layers, patch_sizes, embed_dims, hidden_sizes, mlp_ratios, block_layer, rnn_layer, mlp_layer, norm_layer, act_layer, num_layers, bidirectional, union, with_fc, drop=0., drop_path_rate=0., **kwargs): assert len(layers) == len(patch_sizes) == len(embed_dims) == len(hidden_sizes) == len(mlp_ratios) blocks = [] for block_idx in range(layers[index]): drop_path = drop_path_rate * (block_idx + sum(layers[:index])) / (sum(layers) - 1) blocks.append(block_layer( embed_dims[index], hidden_sizes[index], mlp_ratio=mlp_ratios[index], rnn_layer=rnn_layer, mlp_layer=mlp_layer, norm_layer=norm_layer, act_layer=act_layer, num_layers=num_layers, bidirectional=bidirectional, union=union, with_fc=with_fc, drop=drop, drop_path=drop_path)) if index < len(embed_dims) - 1: blocks.append(Downsample2D(embed_dims[index], embed_dims[index + 1], patch_sizes[index + 1])) blocks = nn.Sequential(*blocks) return blocks class RNNIdentity(nn.Module): def __init__(self, *args, **kwargs): super(RNNIdentity, self).__init__() def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, None]: return x, None class RNN2DBase(nn.Module): def __init__( self, input_size: int, hidden_size: int, num_layers: int = 1, bias: bool = True, bidirectional: bool = True, union="cat", with_fc=True): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = 2 * hidden_size if bidirectional else hidden_size self.union = union self.with_vertical = True self.with_horizontal = True self.with_fc = with_fc self.fc = None if with_fc: if union == "cat": self.fc = nn.Linear(2 * self.output_size, input_size) elif union == "add": self.fc = nn.Linear(self.output_size, input_size) elif union == "vertical": self.fc = nn.Linear(self.output_size, input_size) self.with_horizontal = False elif union == "horizontal": self.fc = nn.Linear(self.output_size, input_size) self.with_vertical = False else: raise ValueError("Unrecognized union: " + union) elif union == "cat": pass if 2 * self.output_size != input_size: raise ValueError(f"The output channel {2 * self.output_size} is different from the input channel {input_size}.") elif union == "add": pass if self.output_size != input_size: raise ValueError(f"The output channel {self.output_size} is different from the input channel {input_size}.") elif union == "vertical": if self.output_size != input_size: raise ValueError(f"The output channel {self.output_size} is different from the input channel {input_size}.") self.with_horizontal = False elif union == "horizontal": if self.output_size != input_size: raise ValueError(f"The output channel {self.output_size} is different from the input channel {input_size}.") self.with_vertical = False else: raise ValueError("Unrecognized union: " + union) self.rnn_v = RNNIdentity() self.rnn_h = RNNIdentity() def forward(self, x): B, H, W, C = x.shape if self.with_vertical: v = x.permute(0, 2, 1, 3) v = v.reshape(-1, H, C) v, _ = self.rnn_v(v) v = v.reshape(B, W, H, -1) v = v.permute(0, 2, 1, 3) else: v = None if self.with_horizontal: h = x.reshape(-1, W, C) h, _ = self.rnn_h(h) h = h.reshape(B, H, W, -1) else: h = None if v is not None and h is not None: if self.union == "cat": x = torch.cat([v, h], dim=-1) else: x = v + h elif v is not None: x = v elif h is not None: x = h if self.fc is not None: x = self.fc(x) return x class LSTM2D(RNN2DBase): def __init__( self, input_size: int, hidden_size: int, num_layers: int = 1, bias: bool = True, bidirectional: bool = True, union="cat", with_fc=True): super().__init__(input_size, hidden_size, num_layers, bias, bidirectional, union, with_fc) if self.with_vertical: self.rnn_v = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bias=bias, bidirectional=bidirectional) if self.with_horizontal: self.rnn_h = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bias=bias, bidirectional=bidirectional) class Sequencer2DBlock(nn.Module): def __init__( self, dim, hidden_size, mlp_ratio=3.0, rnn_layer=LSTM2D, mlp_layer=Mlp, norm_layer=partial(nn.LayerNorm, eps=1e-6), act_layer=nn.GELU, num_layers=1, bidirectional=True, union="cat", with_fc=True, drop=0., drop_path=0.): super().__init__() channels_dim = int(mlp_ratio * dim) self.norm1 = norm_layer(dim) self.rnn_tokens = rnn_layer(dim, hidden_size, num_layers=num_layers, bidirectional=bidirectional, union=union, with_fc=with_fc) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) self.mlp_channels = mlp_layer(dim, channels_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.drop_path(self.rnn_tokens(self.norm1(x))) x = x + self.drop_path(self.mlp_channels(self.norm2(x))) return x class PatchEmbed(TimmPatchEmbed): def forward(self, x): x = self.proj(x) if self.flatten: x = x.flatten(2).transpose(1, 2) # BCHW -> BNC else: x = x.permute(0, 2, 3, 1) # BCHW -> BHWC x = self.norm(x) return x class Shuffle(nn.Module): def __init__(self): super().__init__() def forward(self, x): if self.training: B, H, W, C = x.shape r = torch.randperm(H * W) x = x.reshape(B, -1, C) x = x[:, r, :].reshape(B, H, W, -1) return x class Downsample2D(nn.Module): def __init__(self, input_dim, output_dim, patch_size): super().__init__() self.down = nn.Conv2d(input_dim, output_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): x = x.permute(0, 3, 1, 2) x = self.down(x) x = x.permute(0, 2, 3, 1) return x class Sequencer2D(nn.Module): def __init__( self, num_classes=1000, img_size=224, in_chans=3, global_pool='avg', layers=[4, 3, 8, 3], patch_sizes=[7, 2, 1, 1], embed_dims=[192, 384, 384, 384], hidden_sizes=[48, 96, 96, 96], mlp_ratios=[3.0, 3.0, 3.0, 3.0], block_layer=Sequencer2DBlock, rnn_layer=LSTM2D, mlp_layer=Mlp, norm_layer=partial(nn.LayerNorm, eps=1e-6), act_layer=nn.GELU, num_rnn_layers=1, bidirectional=True, union="cat", with_fc=True, drop_rate=0., drop_path_rate=0., nlhb=False, stem_norm=False, ): super().__init__() assert global_pool in ('', 'avg') self.num_classes = num_classes self.global_pool = global_pool self.num_features = embed_dims[-1] # num_features for consistency with other models self.feature_dim = -1 # channel dim index for feature outputs (rank 4, NHWC) self.embed_dims = embed_dims self.stem = PatchEmbed( img_size=img_size, patch_size=patch_sizes[0], in_chans=in_chans, embed_dim=embed_dims[0], norm_layer=norm_layer if stem_norm else None, flatten=False) self.blocks = nn.Sequential(*[ get_stage( i, layers, patch_sizes, embed_dims, hidden_sizes, mlp_ratios, block_layer=block_layer, rnn_layer=rnn_layer, mlp_layer=mlp_layer, norm_layer=norm_layer, act_layer=act_layer, num_layers=num_rnn_layers, bidirectional=bidirectional, union=union, with_fc=with_fc, drop=drop_rate, drop_path_rate=drop_path_rate, ) for i, _ in enumerate(embed_dims)]) self.norm = norm_layer(embed_dims[-1]) self.head = nn.Linear(embed_dims[-1], self.num_classes) if num_classes > 0 else nn.Identity() self.init_weights(nlhb=nlhb) def init_weights(self, nlhb=False): head_bias = -math.log(self.num_classes) if nlhb else 0. named_apply(partial(_init_weights, head_bias=head_bias), module=self) # depth-first @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^stem', blocks=[ (r'^blocks\.(\d+)\..*\.down', (99999,)), (r'^blocks\.(\d+)', None) if coarse else (r'^blocks\.(\d+)\.(\d+)', None), (r'^norm', (99999,)) ] ) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): assert not enable, 'gradient checkpointing not supported' @torch.jit.ignore def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=None): self.num_classes = num_classes if global_pool is not None: assert global_pool in ('', 'avg') self.global_pool = global_pool self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): x = self.stem(x) x = self.blocks(x) x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False): if self.global_pool == 'avg': x = x.mean(dim=(1, 2)) return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _create_sequencer2d(variant, pretrained=False, **kwargs): if kwargs.get('features_only', None): raise RuntimeError('features_only not implemented for Sequencer2D models.') model = build_model_with_cfg(Sequencer2D, variant, pretrained, **kwargs) return model # main @register_model def sequencer2d_s(pretrained=False, **kwargs): model_args = dict( layers=[4, 3, 8, 3], patch_sizes=[7, 2, 1, 1], embed_dims=[192, 384, 384, 384], hidden_sizes=[48, 96, 96, 96], mlp_ratios=[3.0, 3.0, 3.0, 3.0], rnn_layer=LSTM2D, bidirectional=True, union="cat", with_fc=True, **kwargs) model = _create_sequencer2d('sequencer2d_s', pretrained=pretrained, **model_args) return model @register_model def sequencer2d_m(pretrained=False, **kwargs): model_args = dict( layers=[4, 3, 14, 3], patch_sizes=[7, 2, 1, 1], embed_dims=[192, 384, 384, 384], hidden_sizes=[48, 96, 96, 96], mlp_ratios=[3.0, 3.0, 3.0, 3.0], rnn_layer=LSTM2D, bidirectional=True, union="cat", with_fc=True, **kwargs) model = _create_sequencer2d('sequencer2d_m', pretrained=pretrained, **model_args) return model @register_model def sequencer2d_l(pretrained=False, **kwargs): model_args = dict( layers=[8, 8, 16, 4], patch_sizes=[7, 2, 1, 1], embed_dims=[192, 384, 384, 384], hidden_sizes=[48, 96, 96, 96], mlp_ratios=[3.0, 3.0, 3.0, 3.0], rnn_layer=LSTM2D, bidirectional=True, union="cat", with_fc=True, **kwargs) model = _create_sequencer2d('sequencer2d_l', pretrained=pretrained, **model_args) return model