""" Model Registry Hacked together by / Copyright 2020 Ross Wightman """ import fnmatch import re import sys from collections import defaultdict, deque from copy import deepcopy from typing import List, Optional, Union, Tuple from ._pretrained import PretrainedCfg, DefaultCfg, split_model_name_tag __all__ = [ 'list_models', 'is_model', 'model_entrypoint', 'list_modules', 'is_model_in_modules', 'get_pretrained_cfg_value', 'is_model_pretrained', 'get_arch_name'] _module_to_models = defaultdict(set) # dict of sets to check membership of model in module _model_to_module = {} # mapping of model names to module names _model_entrypoints = {} # mapping of model names to architecture entrypoint fns _model_has_pretrained = set() # set of model names that have pretrained weight url present _model_default_cfgs = dict() # central repo for model arch -> default cfg objects _model_pretrained_cfgs = dict() # central repo for model arch + tag -> pretrained cfgs _model_with_tags = defaultdict(list) # shortcut to map each model arch to all model + tag names def get_arch_name(model_name: str) -> Tuple[str, Optional[str]]: return split_model_name_tag(model_name)[0] def register_model(fn): # lookup containing module mod = sys.modules[fn.__module__] module_name_split = fn.__module__.split('.') module_name = module_name_split[-1] if len(module_name_split) else '' # add model to __all__ in module model_name = fn.__name__ if hasattr(mod, '__all__'): mod.__all__.append(model_name) else: mod.__all__ = [model_name] # add entries to registry dict/sets _model_entrypoints[model_name] = fn _model_to_module[model_name] = module_name _module_to_models[module_name].add(model_name) if hasattr(mod, 'default_cfgs') and model_name in mod.default_cfgs: # this will catch all models that have entrypoint matching cfg key, but miss any aliasing # entrypoints or non-matching combos cfg = mod.default_cfgs[model_name] if not isinstance(cfg, DefaultCfg): # new style default cfg dataclass w/ multiple entries per model-arch assert isinstance(cfg, dict) # old style cfg dict per model-arch cfg = PretrainedCfg(**cfg) cfg = DefaultCfg(tags=deque(['']), cfgs={'': cfg}) for tag_idx, tag in enumerate(cfg.tags): is_default = tag_idx == 0 pretrained_cfg = cfg.cfgs[tag] if is_default: _model_pretrained_cfgs[model_name] = pretrained_cfg if pretrained_cfg.has_weights: # add tagless entry if it's default and has weights _model_has_pretrained.add(model_name) if tag: model_name_tag = '.'.join([model_name, tag]) _model_pretrained_cfgs[model_name_tag] = pretrained_cfg if pretrained_cfg.has_weights: # add model w/ tag if tag is valid _model_has_pretrained.add(model_name_tag) _model_with_tags[model_name].append(model_name_tag) else: _model_with_tags[model_name].append(model_name) # has empty tag (to slowly remove these instances) _model_default_cfgs[model_name] = cfg return fn def _natural_key(string_): return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] def list_models( filter: Union[str, List[str]] = '', module: str = '', pretrained=False, exclude_filters: str = '', name_matches_cfg: bool = False, include_tags: Optional[bool] = None, ): """ Return list of available model names, sorted alphabetically Args: filter (str) - Wildcard filter string that works with fnmatch module (str) - Limit model selection to a specific submodule (ie 'vision_transformer') pretrained (bool) - Include only models with valid pretrained weights if True exclude_filters (str or list[str]) - Wildcard filters to exclude models after including them with filter name_matches_cfg (bool) - Include only models w/ model_name matching default_cfg name (excludes some aliases) include_tags (Optional[boo]) - Include pretrained tags in model names (model.tag). If None, defaults set to True when pretrained=True else False (default: None) Example: model_list('gluon_resnet*') -- returns all models starting with 'gluon_resnet' model_list('*resnext*, 'resnet') -- returns all models with 'resnext' in 'resnet' module """ if include_tags is None: # FIXME should this be default behaviour? or default to include_tags=True? include_tags = pretrained if module: all_models = list(_module_to_models[module]) else: all_models = _model_entrypoints.keys() if include_tags: # expand model names to include names w/ pretrained tags models_with_tags = [] for m in all_models: models_with_tags.extend(_model_with_tags[m]) all_models = models_with_tags if filter: models = [] include_filters = filter if isinstance(filter, (tuple, list)) else [filter] for f in include_filters: include_models = fnmatch.filter(all_models, f) # include these models if len(include_models): models = set(models).union(include_models) else: models = all_models if exclude_filters: if not isinstance(exclude_filters, (tuple, list)): exclude_filters = [exclude_filters] for xf in exclude_filters: exclude_models = fnmatch.filter(models, xf) # exclude these models if len(exclude_models): models = set(models).difference(exclude_models) if pretrained: models = _model_has_pretrained.intersection(models) if name_matches_cfg: models = set(_model_pretrained_cfgs).intersection(models) return list(sorted(models, key=_natural_key)) def list_pretrained( filter: Union[str, List[str]] = '', exclude_filters: str = '', ): return list_models( filter=filter, pretrained=True, exclude_filters=exclude_filters, include_tags=True, ) def is_model(model_name): """ Check if a model name exists """ arch_name = get_arch_name(model_name) return arch_name in _model_entrypoints def model_entrypoint(model_name): """Fetch a model entrypoint for specified model name """ arch_name = get_arch_name(model_name) return _model_entrypoints[arch_name] def list_modules(): """ Return list of module names that contain models / model entrypoints """ modules = _module_to_models.keys() return list(sorted(modules)) def is_model_in_modules(model_name, module_names): """Check if a model exists within a subset of modules Args: model_name (str) - name of model to check module_names (tuple, list, set) - names of modules to search in """ arch_name = get_arch_name(model_name) assert isinstance(module_names, (tuple, list, set)) return any(arch_name in _module_to_models[n] for n in module_names) def is_model_pretrained(model_name): return model_name in _model_has_pretrained def get_pretrained_cfg(model_name): if model_name in _model_pretrained_cfgs: return deepcopy(_model_pretrained_cfgs[model_name]) raise RuntimeError(f'No pretrained config exists for model {model_name}.') def get_pretrained_cfg_value(model_name, cfg_key): """ Get a specific model default_cfg value by key. None if key doesn't exist. """ if model_name in _model_pretrained_cfgs: return getattr(_model_pretrained_cfgs[model_name], cfg_key, None) raise RuntimeError(f'No pretrained config exist for model {model_name}.')