""" Model / state_dict utils Hacked together by / Copyright 2020 Ross Wightman """ from .model_ema import ModelEma import torch import fnmatch _SUB_MODULE_ATTR = ('module', 'model') def unwrap_model(model, recursive=True): for attr in _SUB_MODULE_ATTR: sub_module = getattr(model, attr, None) if sub_module is not None: return unwrap_model(sub_module) if recursive else sub_module return model def get_state_dict(model, unwrap_fn=unwrap_model): return unwrap_fn(model).state_dict() def avg_sq_ch_mean(model, input, output): """calculate average channel square mean of output activations """ return torch.mean(output.mean(axis=[0, 2, 3]) ** 2).item() def avg_ch_var(model, input, output): """calculate average channel variance of output activations""" return torch.mean(output.var(axis=[0, 2, 3])).item() def avg_ch_var_residual(model, input, output): """calculate average channel variance of output activations""" return torch.mean(output.var(axis=[0, 2, 3])).item() class ActivationStatsHook: """Iterates through each of `model`'s modules and matches modules using unix pattern matching based on `hook_fn_locs` and registers `hook_fn` to the module if there is a match. Arguments: model (nn.Module): model from which we will extract the activation stats hook_fn_locs (List[str]): List of `hook_fn` locations based on Unix type string matching with the name of model's modules. hook_fns (List[Callable]): List of hook functions to be registered at every module in `layer_names`. Inspiration from https://docs.fast.ai/callback.hook.html. Refer to https://gist.github.com/amaarora/6e56942fcb46e67ba203f3009b30d950 for an example on how to plot Signal Propogation Plots using `ActivationStatsHook`. """ def __init__(self, model, hook_fn_locs, hook_fns): self.model = model self.hook_fn_locs = hook_fn_locs self.hook_fns = hook_fns if len(hook_fn_locs) != len(hook_fns): raise ValueError("Please provide `hook_fns` for each `hook_fn_locs`, \ their lengths are different.") self.stats = dict((hook_fn.__name__, []) for hook_fn in hook_fns) for hook_fn_loc, hook_fn in zip(hook_fn_locs, hook_fns): self.register_hook(hook_fn_loc, hook_fn) def _create_hook(self, hook_fn): def append_activation_stats(module, input, output): out = hook_fn(module, input, output) self.stats[hook_fn.__name__].append(out) return append_activation_stats def register_hook(self, hook_fn_loc, hook_fn): for name, module in self.model.named_modules(): if not fnmatch.fnmatch(name, hook_fn_loc): continue module.register_forward_hook(self._create_hook(hook_fn)) def extract_spp_stats(model, hook_fn_locs, hook_fns, input_shape=[8, 3, 224, 224]): """Extract average square channel mean and variance of activations during forward pass to plot Signal Propogation Plots (SPP). Paper: https://arxiv.org/abs/2101.08692 Example Usage: https://gist.github.com/amaarora/6e56942fcb46e67ba203f3009b30d950 """ x = torch.normal(0., 1., input_shape) hook = ActivationStatsHook(model, hook_fn_locs=hook_fn_locs, hook_fns=hook_fns) _ = model(x) return hook.stats