from torch.nn.modules.batchnorm import BatchNorm2d from torchvision.ops.misc import FrozenBatchNorm2d import timm from timm.utils.model import freeze, unfreeze def test_freeze_unfreeze(): model = timm.create_model('resnet18') # Freeze all freeze(model) # Check top level module assert model.fc.weight.requires_grad == False # Check submodule assert model.layer1[0].conv1.weight.requires_grad == False # Check BN assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d) # Unfreeze all unfreeze(model) # Check top level module assert model.fc.weight.requires_grad == True # Check submodule assert model.layer1[0].conv1.weight.requires_grad == True # Check BN assert isinstance(model.layer1[0].bn1, BatchNorm2d) # Freeze some freeze(model, ['layer1', 'layer2.0']) # Check frozen assert model.layer1[0].conv1.weight.requires_grad == False assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d) assert model.layer2[0].conv1.weight.requires_grad == False # Check not frozen assert model.layer3[0].conv1.weight.requires_grad == True assert isinstance(model.layer3[0].bn1, BatchNorm2d) assert model.layer2[1].conv1.weight.requires_grad == True # Unfreeze some unfreeze(model, ['layer1', 'layer2.0']) # Check not frozen assert model.layer1[0].conv1.weight.requires_grad == True assert isinstance(model.layer1[0].bn1, BatchNorm2d) assert model.layer2[0].conv1.weight.requires_grad == True # Freeze BN # From root freeze(model, ['layer1.0.bn1']) assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d) # From direct parent freeze(model.layer1[0], ['bn1']) assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d) # Unfreeze BN unfreeze(model, ['layer1.0.bn1']) assert isinstance(model.layer1[0].bn1, BatchNorm2d) # From direct parent unfreeze(model.layer1[0], ['bn1']) assert isinstance(model.layer1[0].bn1, BatchNorm2d)