""" Normalization + Activation Layers """ from typing import Union, List, Optional, Any import torch from torch import nn as nn from torch.nn import functional as F from .trace_utils import _assert from .create_act import get_act_layer class BatchNormAct2d(nn.BatchNorm2d): """BatchNorm + Activation This module performs BatchNorm + Activation in a manner that will remain backwards compatible with weights trained with separate bn, act. This is why we inherit from BN instead of composing it as a .bn member. """ def __init__( self, num_features, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True, apply_act=True, act_layer=nn.ReLU, inplace=True, drop_layer=None, device=None, dtype=None ): try: factory_kwargs = {'device': device, 'dtype': dtype} super(BatchNormAct2d, self).__init__( num_features, eps=eps, momentum=momentum, affine=affine, track_running_stats=track_running_stats, **factory_kwargs ) except TypeError: # NOTE for backwards compat with old PyTorch w/o factory device/dtype support super(BatchNormAct2d, self).__init__( num_features, eps=eps, momentum=momentum, affine=affine, track_running_stats=track_running_stats) self.drop = drop_layer() if drop_layer is not None else nn.Identity() act_layer = get_act_layer(act_layer) # string -> nn.Module if act_layer is not None and apply_act: act_args = dict(inplace=True) if inplace else {} self.act = act_layer(**act_args) else: self.act = nn.Identity() def forward(self, x): # cut & paste of torch.nn.BatchNorm2d.forward impl to avoid issues with torchscript and tracing _assert(x.ndim == 4, f'expected 4D input (got {x.ndim}D input)') # exponential_average_factor is set to self.momentum # (when it is available) only so that it gets updated # in ONNX graph when this node is exported to ONNX. if self.momentum is None: exponential_average_factor = 0.0 else: exponential_average_factor = self.momentum if self.training and self.track_running_stats: # TODO: if statement only here to tell the jit to skip emitting this when it is None if self.num_batches_tracked is not None: # type: ignore[has-type] self.num_batches_tracked = self.num_batches_tracked + 1 # type: ignore[has-type] if self.momentum is None: # use cumulative moving average exponential_average_factor = 1.0 / float(self.num_batches_tracked) else: # use exponential moving average exponential_average_factor = self.momentum r""" Decide whether the mini-batch stats should be used for normalization rather than the buffers. Mini-batch stats are used in training mode, and in eval mode when buffers are None. """ if self.training: bn_training = True else: bn_training = (self.running_mean is None) and (self.running_var is None) r""" Buffers are only updated if they are to be tracked and we are in training mode. Thus they only need to be passed when the update should occur (i.e. in training mode when they are tracked), or when buffer stats are used for normalization (i.e. in eval mode when buffers are not None). """ x = F.batch_norm( x, # If buffers are not to be tracked, ensure that they won't be updated self.running_mean if not self.training or self.track_running_stats else None, self.running_var if not self.training or self.track_running_stats else None, self.weight, self.bias, bn_training, exponential_average_factor, self.eps, ) x = self.drop(x) x = self.act(x) return x class SyncBatchNormAct(nn.SyncBatchNorm): # Thanks to Selim Seferbekov (https://github.com/rwightman/pytorch-image-models/issues/1254) # This is a quick workaround to support SyncBatchNorm for timm BatchNormAct2d layers # but ONLY when used in conjunction with the timm conversion function below. # Do not create this module directly or use the PyTorch conversion function. def forward(self, x: torch.Tensor) -> torch.Tensor: x = super().forward(x) # SyncBN doesn't work with torchscript anyways, so this is fine if hasattr(self, "drop"): x = self.drop(x) if hasattr(self, "act"): x = self.act(x) return x def convert_sync_batchnorm(module, process_group=None): # convert both BatchNorm and BatchNormAct layers to Synchronized variants module_output = module if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): if isinstance(module, BatchNormAct2d): # convert timm norm + act layer module_output = SyncBatchNormAct( module.num_features, module.eps, module.momentum, module.affine, module.track_running_stats, process_group=process_group, ) # set act and drop attr from the original module module_output.act = module.act module_output.drop = module.drop else: # convert standard BatchNorm layers module_output = torch.nn.SyncBatchNorm( module.num_features, module.eps, module.momentum, module.affine, module.track_running_stats, process_group, ) if module.affine: with torch.no_grad(): module_output.weight = module.weight module_output.bias = module.bias module_output.running_mean = module.running_mean module_output.running_var = module.running_var module_output.num_batches_tracked = module.num_batches_tracked if hasattr(module, "qconfig"): module_output.qconfig = module.qconfig for name, child in module.named_children(): module_output.add_module(name, convert_sync_batchnorm(child, process_group)) del module return module_output def group_norm_tpu(x, w, b, groups: int = 32, eps: float = 1e-5, diff_sqm: bool = False, flatten: bool = False): # This is a workaround for some odd behaviour running on PyTorch XLA w/ TPUs. x_shape = x.shape x_dtype = x.dtype if flatten: norm_shape = (x_shape[0], groups, -1) reduce_dim = -1 else: norm_shape = (x_shape[0], groups, x_shape[1] // groups) + x_shape[2:] reduce_dim = tuple(range(2, x.ndim + 1)) affine_shape = (1, -1) + (1,) * (x.ndim - 2) x = x.reshape(norm_shape) # x = x.to(torch.float32) # for testing w/ AMP xm = x.mean(dim=reduce_dim, keepdim=True) if diff_sqm: # difference of squared mean and mean squared, faster on TPU var = (x.square().mean(dim=reduce_dim, keepdim=True) - xm.square()).clamp(0) else: var = (x - xm).square().mean(dim=reduce_dim, keepdim=True) x = (x - xm.expand(norm_shape)) / var.add(eps).sqrt().expand(norm_shape) x = x.reshape(x_shape) * w.view(affine_shape) + b.view(affine_shape) # x = x.to(x_dtype) # for testing w/ AMP return x def _num_groups(num_channels, num_groups, group_size): if group_size: assert num_channels % group_size == 0 return num_channels // group_size return num_groups class GroupNormAct(nn.GroupNorm): # NOTE num_channel and num_groups order flipped for easier layer swaps / binding of fixed args def __init__( self, num_channels, num_groups=32, eps=1e-5, affine=True, group_size=None, apply_act=True, act_layer=nn.ReLU, inplace=True, drop_layer=None): super(GroupNormAct, self).__init__( _num_groups(num_channels, num_groups, group_size), num_channels, eps=eps, affine=affine) self.drop = drop_layer() if drop_layer is not None else nn.Identity() act_layer = get_act_layer(act_layer) # string -> nn.Module if act_layer is not None and apply_act: act_args = dict(inplace=True) if inplace else {} self.act = act_layer(**act_args) else: self.act = nn.Identity() def forward(self, x): if False: # FIXME TPU temporary while resolving some performance issues x = group_norm_tpu(x, self.weight, self.bias, self.num_groups, self.eps) else: x = F.group_norm(x, self.num_groups, self.weight, self.bias, self.eps) x = self.drop(x) x = self.act(x) return x class LayerNormAct(nn.LayerNorm): def __init__( self, normalization_shape: Union[int, List[int], torch.Size], eps=1e-5, affine=True, apply_act=True, act_layer=nn.ReLU, inplace=True, drop_layer=None): super(LayerNormAct, self).__init__(normalization_shape, eps=eps, elementwise_affine=affine) self.drop = drop_layer() if drop_layer is not None else nn.Identity() act_layer = get_act_layer(act_layer) # string -> nn.Module if act_layer is not None and apply_act: act_args = dict(inplace=True) if inplace else {} self.act = act_layer(**act_args) else: self.act = nn.Identity() def forward(self, x): x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) x = self.drop(x) x = self.act(x) return x class LayerNormAct2d(nn.LayerNorm): def __init__( self, num_channels, eps=1e-5, affine=True, apply_act=True, act_layer=nn.ReLU, inplace=True, drop_layer=None): super(LayerNormAct2d, self).__init__(num_channels, eps=eps, elementwise_affine=affine) self.drop = drop_layer() if drop_layer is not None else nn.Identity() act_layer = get_act_layer(act_layer) # string -> nn.Module if act_layer is not None and apply_act: act_args = dict(inplace=True) if inplace else {} self.act = act_layer(**act_args) else: self.act = nn.Identity() def forward(self, x): x = F.layer_norm( x.permute(0, 2, 3, 1), self.normalized_shape, self.weight, self.bias, self.eps).permute(0, 3, 1, 2) x = self.drop(x) x = self.act(x) return x