from .registry import is_model, is_model_in_modules, model_entrypoint from .helpers import load_checkpoint, load_hf_checkpoint_config from .layers import set_layer_config def create_model( model_name, pretrained=False, checkpoint_path='', scriptable=None, exportable=None, no_jit=None, **kwargs): """Create a model Args: model_name (str): name of model to instantiate pretrained (bool): load pretrained ImageNet-1k weights if true checkpoint_path (str): path of checkpoint to load after model is initialized scriptable (bool): set layer config so that model is jit scriptable (not working for all models yet) exportable (bool): set layer config so that model is traceable / ONNX exportable (not fully impl/obeyed yet) no_jit (bool): set layer config so that model doesn't utilize jit scripted layers (so far activations only) Keyword Args: drop_rate (float): dropout rate for training (default: 0.0) global_pool (str): global pool type (default: 'avg') **: other kwargs are model specific """ model_args = dict(pretrained=pretrained) # Only EfficientNet and MobileNetV3 models have support for batchnorm params or drop_connect_rate passed as args is_efficientnet = is_model_in_modules(model_name, ['efficientnet', 'mobilenetv3']) if not is_efficientnet: kwargs.pop('bn_tf', None) kwargs.pop('bn_momentum', None) kwargs.pop('bn_eps', None) # handle backwards compat with drop_connect -> drop_path change drop_connect_rate = kwargs.pop('drop_connect_rate', None) if drop_connect_rate is not None and kwargs.get('drop_path_rate', None) is None: print("WARNING: 'drop_connect' as an argument is deprecated, please use 'drop_path'." " Setting drop_path to %f." % drop_connect_rate) kwargs['drop_path_rate'] = drop_connect_rate # Parameters that aren't supported by all models or are intended to only override model defaults if set # should default to None in command line args/cfg. Remove them if they are present and not set so that # non-supporting models don't break and default args remain in effect. kwargs = {k: v for k, v in kwargs.items() if v is not None} with set_layer_config(scriptable=scriptable, exportable=exportable, no_jit=no_jit): if is_model(model_name): create_fn = model_entrypoint(model_name) model = create_fn(**model_args, **kwargs) else: try: model_cfg = load_hf_checkpoint_config(model_name, revision=kwargs.get("hf_revision")) create_fn = model_entrypoint(model_cfg.pop("architecture")) model = create_fn(**model_args, hf_checkpoint=model_name, **kwargs) # Probably need some extra stuff, but this is a PoC of how the config in the model hub # could overwrite the default config values. # model.default_cfg.update(model_cfg) except Exception as e: raise RuntimeError('Unknown model or checkpoint from the Hugging Face hub (%s)' % model_name) if checkpoint_path: load_checkpoint(model, checkpoint_path) return model