"""RegNet Paper: `Designing Network Design Spaces` - https://arxiv.org/abs/2003.13678 Original Impl: https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py Based on original PyTorch impl linked above, but re-wrote to use my own blocks (adapted from ResNet here) and cleaned up with more descriptive variable names. Weights from original impl have been modified * first layer from BGR -> RGB as most PyTorch models are * removed training specific dict entries from checkpoints and keep model state_dict only * remap names to match the ones here Hacked together by / Copyright 2020 Ross Wightman """ import math from dataclasses import dataclass from functools import partial from typing import Optional, Union, Callable import numpy as np import torch.nn as nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from .helpers import build_model_with_cfg, named_apply from .layers import ClassifierHead, AvgPool2dSame, ConvNormAct, SEModule, DropPath, GroupNormAct from .layers import get_act_layer, get_norm_act_layer, create_conv2d from .registry import register_model @dataclass class RegNetCfg: depth: int = 21 w0: int = 80 wa: float = 42.63 wm: float = 2.66 group_size: int = 24 bottle_ratio: float = 1. se_ratio: float = 0. stem_width: int = 32 downsample: Optional[str] = 'conv1x1' linear_out: bool = False preact: bool = False num_features: int = 0 act_layer: Union[str, Callable] = 'relu' norm_layer: Union[str, Callable] = 'batchnorm' # Model FLOPS = three trailing digits * 10^8 model_cfgs = dict( # RegNet-X regnetx_002=RegNetCfg(w0=24, wa=36.44, wm=2.49, group_size=8, depth=13), regnetx_004=RegNetCfg(w0=24, wa=24.48, wm=2.54, group_size=16, depth=22), regnetx_006=RegNetCfg(w0=48, wa=36.97, wm=2.24, group_size=24, depth=16), regnetx_008=RegNetCfg(w0=56, wa=35.73, wm=2.28, group_size=16, depth=16), regnetx_016=RegNetCfg(w0=80, wa=34.01, wm=2.25, group_size=24, depth=18), regnetx_032=RegNetCfg(w0=88, wa=26.31, wm=2.25, group_size=48, depth=25), regnetx_040=RegNetCfg(w0=96, wa=38.65, wm=2.43, group_size=40, depth=23), regnetx_064=RegNetCfg(w0=184, wa=60.83, wm=2.07, group_size=56, depth=17), regnetx_080=RegNetCfg(w0=80, wa=49.56, wm=2.88, group_size=120, depth=23), regnetx_120=RegNetCfg(w0=168, wa=73.36, wm=2.37, group_size=112, depth=19), regnetx_160=RegNetCfg(w0=216, wa=55.59, wm=2.1, group_size=128, depth=22), regnetx_320=RegNetCfg(w0=320, wa=69.86, wm=2.0, group_size=168, depth=23), # RegNet-Y regnety_002=RegNetCfg(w0=24, wa=36.44, wm=2.49, group_size=8, depth=13, se_ratio=0.25), regnety_004=RegNetCfg(w0=48, wa=27.89, wm=2.09, group_size=8, depth=16, se_ratio=0.25), regnety_006=RegNetCfg(w0=48, wa=32.54, wm=2.32, group_size=16, depth=15, se_ratio=0.25), regnety_008=RegNetCfg(w0=56, wa=38.84, wm=2.4, group_size=16, depth=14, se_ratio=0.25), regnety_016=RegNetCfg(w0=48, wa=20.71, wm=2.65, group_size=24, depth=27, se_ratio=0.25), regnety_032=RegNetCfg(w0=80, wa=42.63, wm=2.66, group_size=24, depth=21, se_ratio=0.25), regnety_040=RegNetCfg(w0=96, wa=31.41, wm=2.24, group_size=64, depth=22, se_ratio=0.25), regnety_064=RegNetCfg(w0=112, wa=33.22, wm=2.27, group_size=72, depth=25, se_ratio=0.25), regnety_080=RegNetCfg(w0=192, wa=76.82, wm=2.19, group_size=56, depth=17, se_ratio=0.25), regnety_120=RegNetCfg(w0=168, wa=73.36, wm=2.37, group_size=112, depth=19, se_ratio=0.25), regnety_160=RegNetCfg(w0=200, wa=106.23, wm=2.48, group_size=112, depth=18, se_ratio=0.25), regnety_320=RegNetCfg(w0=232, wa=115.89, wm=2.53, group_size=232, depth=20, se_ratio=0.25), # Experimental regnety_040s_gn=RegNetCfg( w0=96, wa=31.41, wm=2.24, group_size=64, depth=22, se_ratio=0.25, act_layer='silu', norm_layer=partial(GroupNormAct, group_size=16)), # regnetv = 'preact regnet y' regnetv_040=RegNetCfg( depth=22, w0=96, wa=31.41, wm=2.24, group_size=64, se_ratio=0.25, preact=True, act_layer='silu'), # regnetw = 'preact regnet z' regnetw_040=RegNetCfg( depth=28, w0=48, wa=14.5, wm=2.226, group_size=8, bottle_ratio=4.0, se_ratio=0.25, downsample=None, preact=True, num_features=1536, act_layer='silu', ), # RegNet-Z (unverified) regnetz_005=RegNetCfg( depth=21, w0=16, wa=10.7, wm=2.51, group_size=4, bottle_ratio=4.0, se_ratio=0.25, downsample=None, linear_out=True, num_features=1024, act_layer='silu', ), regnetz_040=RegNetCfg( depth=28, w0=48, wa=14.5, wm=2.226, group_size=8, bottle_ratio=4.0, se_ratio=0.25, downsample=None, linear_out=True, num_features=1536, act_layer='silu', ), ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv', 'classifier': 'head.fc', **kwargs } default_cfgs = dict( regnetx_002=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_002-e7e85e5c.pth'), regnetx_004=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_004-7d0e9424.pth'), regnetx_006=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_006-85ec1baa.pth'), regnetx_008=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_008-d8b470eb.pth'), regnetx_016=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_016-65ca972a.pth'), regnetx_032=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_032-ed0c7f7e.pth'), regnetx_040=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_040-73c2a654.pth'), regnetx_064=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_064-29278baa.pth'), regnetx_080=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_080-7c7fcab1.pth'), regnetx_120=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_120-65d5521e.pth'), regnetx_160=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_160-c98c4112.pth'), regnetx_320=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_320-8ea38b93.pth'), regnety_002=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_002-e68ca334.pth'), regnety_004=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_004-0db870e6.pth'), regnety_006=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_006-c67e57ec.pth'), regnety_008=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_008-dc900dbe.pth'), regnety_016=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_016-54367f74.pth'), regnety_032=_cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/regnety_032_ra-7f2439f9.pth', crop_pct=1.0, test_input_size=(3, 288, 288)), regnety_040=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_040-f0d569f9.pth'), regnety_064=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_064-0a48325c.pth'), regnety_080=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_080-e7f3eb93.pth'), regnety_120=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_120-721ba79a.pth'), regnety_160=_cfg( url='https://dl.fbaipublicfiles.com/deit/regnety_160-a5fe301d.pth', # from Facebook DeiT GitHub repository crop_pct=1.0, test_input_size=(3, 288, 288)), regnety_320=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_320-ba464b29.pth'), regnety_040s_gn=_cfg(url=''), regnetv_040=_cfg(url=''), regnetw_040=_cfg(url=''), regnetz_005=_cfg(url=''), regnetz_040=_cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)), ) def quantize_float(f, q): """Converts a float to closest non-zero int divisible by q.""" return int(round(f / q) * q) def adjust_widths_groups_comp(widths, bottle_ratios, groups): """Adjusts the compatibility of widths and groups.""" bottleneck_widths = [int(w * b) for w, b in zip(widths, bottle_ratios)] groups = [min(g, w_bot) for g, w_bot in zip(groups, bottleneck_widths)] bottleneck_widths = [quantize_float(w_bot, g) for w_bot, g in zip(bottleneck_widths, groups)] widths = [int(w_bot / b) for w_bot, b in zip(bottleneck_widths, bottle_ratios)] return widths, groups def generate_regnet(width_slope, width_initial, width_mult, depth, q=8): """Generates per block widths from RegNet parameters.""" assert width_slope >= 0 and width_initial > 0 and width_mult > 1 and width_initial % q == 0 widths_cont = np.arange(depth) * width_slope + width_initial width_exps = np.round(np.log(widths_cont / width_initial) / np.log(width_mult)) widths = width_initial * np.power(width_mult, width_exps) widths = np.round(np.divide(widths, q)) * q num_stages, max_stage = len(np.unique(widths)), width_exps.max() + 1 widths, widths_cont = widths.astype(int).tolist(), widths_cont.tolist() return widths, num_stages, max_stage, widths_cont def downsample_conv(in_chs, out_chs, kernel_size=1, stride=1, dilation=1, norm_layer=None, preact=False): norm_layer = norm_layer or nn.BatchNorm2d kernel_size = 1 if stride == 1 and dilation == 1 else kernel_size dilation = dilation if kernel_size > 1 else 1 if preact: return create_conv2d(in_chs, out_chs, kernel_size, stride=stride, dilation=dilation) else: return ConvNormAct( in_chs, out_chs, kernel_size, stride=stride, dilation=dilation, norm_layer=norm_layer, apply_act=False) def downsample_avg(in_chs, out_chs, kernel_size=1, stride=1, dilation=1, norm_layer=None, preact=False): """ AvgPool Downsampling as in 'D' ResNet variants. This is not in RegNet space but I might experiment.""" norm_layer = norm_layer or nn.BatchNorm2d avg_stride = stride if dilation == 1 else 1 pool = nn.Identity() if stride > 1 or dilation > 1: avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) if preact: conv = create_conv2d(in_chs, out_chs, 1, stride=1) else: conv = ConvNormAct(in_chs, out_chs, 1, stride=1, norm_layer=norm_layer, apply_act=False) return nn.Sequential(*[pool, conv]) def create_shortcut( downsample_type, in_chs, out_chs, kernel_size, stride, dilation=(1, 1), norm_layer=None, preact=False): assert downsample_type in ('avg', 'conv1x1', '', None) if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]: dargs = dict(stride=stride, dilation=dilation[0], norm_layer=norm_layer, preact=preact) if not downsample_type: return None # no shortcut, no downsample elif downsample_type == 'avg': return downsample_avg(in_chs, out_chs, **dargs) else: return downsample_conv(in_chs, out_chs, kernel_size=kernel_size, **dargs) else: return nn.Identity() # identity shortcut (no downsample) class Bottleneck(nn.Module): """ RegNet Bottleneck This is almost exactly the same as a ResNet Bottlneck. The main difference is the SE block is moved from after conv3 to after conv2. Otherwise, it's just redefining the arguments for groups/bottleneck channels. """ def __init__( self, in_chs, out_chs, stride=1, dilation=(1, 1), bottle_ratio=1, group_size=1, se_ratio=0.25, downsample='conv1x1', linear_out=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, drop_block=None, drop_path_rate=0.): super(Bottleneck, self).__init__() act_layer = get_act_layer(act_layer) bottleneck_chs = int(round(out_chs * bottle_ratio)) groups = bottleneck_chs // group_size cargs = dict(act_layer=act_layer, norm_layer=norm_layer) self.conv1 = ConvNormAct(in_chs, bottleneck_chs, kernel_size=1, **cargs) self.conv2 = ConvNormAct( bottleneck_chs, bottleneck_chs, kernel_size=3, stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block, **cargs) if se_ratio: se_channels = int(round(in_chs * se_ratio)) self.se = SEModule(bottleneck_chs, rd_channels=se_channels, act_layer=act_layer) else: self.se = nn.Identity() self.conv3 = ConvNormAct(bottleneck_chs, out_chs, kernel_size=1, apply_act=False, **cargs) self.act3 = nn.Identity() if linear_out else act_layer() self.downsample = create_shortcut(downsample, in_chs, out_chs, 1, stride, dilation, norm_layer=norm_layer) self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() def zero_init_last(self): nn.init.zeros_(self.conv3.bn.weight) def forward(self, x): shortcut = x x = self.conv1(x) x = self.conv2(x) x = self.se(x) x = self.conv3(x) if self.downsample is not None: # NOTE stuck with downsample as the attr name due to weight compatibility # now represents the shortcut, no shortcut if None, and non-downsample shortcut == nn.Identity() x = self.drop_path(x) + self.downsample(shortcut) x = self.act3(x) return x class PreBottleneck(nn.Module): """ RegNet Bottleneck This is almost exactly the same as a ResNet Bottlneck. The main difference is the SE block is moved from after conv3 to after conv2. Otherwise, it's just redefining the arguments for groups/bottleneck channels. """ def __init__( self, in_chs, out_chs, stride=1, dilation=(1, 1), bottle_ratio=1, group_size=1, se_ratio=0.25, downsample='conv1x1', linear_out=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, drop_block=None, drop_path_rate=0.): super(PreBottleneck, self).__init__() norm_act_layer = get_norm_act_layer(norm_layer, act_layer) bottleneck_chs = int(round(out_chs * bottle_ratio)) groups = bottleneck_chs // group_size self.norm1 = norm_act_layer(in_chs) self.conv1 = create_conv2d(in_chs, bottleneck_chs, kernel_size=1) self.norm2 = norm_act_layer(bottleneck_chs) self.conv2 = create_conv2d( bottleneck_chs, bottleneck_chs, kernel_size=3, stride=stride, dilation=dilation[0], groups=groups) if se_ratio: se_channels = int(round(in_chs * se_ratio)) self.se = SEModule(bottleneck_chs, rd_channels=se_channels, act_layer=act_layer) else: self.se = nn.Identity() self.norm3 = norm_act_layer(bottleneck_chs) self.conv3 = create_conv2d(bottleneck_chs, out_chs, kernel_size=1) self.downsample = create_shortcut(downsample, in_chs, out_chs, 1, stride, dilation, preact=True) self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() def zero_init_last(self): pass def forward(self, x): x = self.norm1(x) shortcut = x x = self.conv1(x) x = self.norm2(x) x = self.conv2(x) x = self.se(x) x = self.norm3(x) x = self.conv3(x) if self.downsample is not None: # NOTE stuck with downsample as the attr name due to weight compatibility # now represents the shortcut, no shortcut if None, and non-downsample shortcut == nn.Identity() x = self.drop_path(x) + self.downsample(shortcut) return x class RegStage(nn.Module): """Stage (sequence of blocks w/ the same output shape).""" def __init__( self, depth, in_chs, out_chs, stride, dilation, drop_path_rates=None, block_fn=Bottleneck, **block_kwargs): super(RegStage, self).__init__() first_dilation = 1 if dilation in (1, 2) else 2 for i in range(depth): block_stride = stride if i == 0 else 1 block_in_chs = in_chs if i == 0 else out_chs block_dilation = (first_dilation, dilation) dpr = drop_path_rates[i] if drop_path_rates is not None else 0. name = "b{}".format(i + 1) self.add_module( name, block_fn( block_in_chs, out_chs, stride=block_stride, dilation=block_dilation, drop_path_rate=dpr, **block_kwargs) ) first_dilation = dilation def forward(self, x): for block in self.children(): x = block(x) return x class RegNet(nn.Module): """RegNet-X, Y, and Z Models Paper: https://arxiv.org/abs/2003.13678 Original Impl: https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py """ def __init__( self, cfg: RegNetCfg, in_chans=3, num_classes=1000, output_stride=32, global_pool='avg', drop_rate=0., drop_path_rate=0., zero_init_last=True): super().__init__() self.num_classes = num_classes self.drop_rate = drop_rate assert output_stride in (8, 16, 32) # Construct the stem stem_width = cfg.stem_width na_args = dict(act_layer=cfg.act_layer, norm_layer=cfg.norm_layer) if cfg.preact: self.stem = create_conv2d(in_chans, stem_width, 3, stride=2) else: self.stem = ConvNormAct(in_chans, stem_width, 3, stride=2, **na_args) self.feature_info = [dict(num_chs=stem_width, reduction=2, module='stem')] # Construct the stages prev_width = stem_width curr_stride = 2 per_stage_args, common_args = self._get_stage_args( cfg, output_stride=output_stride, drop_path_rate=drop_path_rate) block_fn = PreBottleneck if cfg.preact else Bottleneck for i, stage_args in enumerate(per_stage_args): stage_name = "s{}".format(i + 1) self.add_module(stage_name, RegStage(in_chs=prev_width, block_fn=block_fn, **stage_args, **common_args)) prev_width = stage_args['out_chs'] curr_stride *= stage_args['stride'] self.feature_info += [dict(num_chs=prev_width, reduction=curr_stride, module=stage_name)] # Construct the head if cfg.num_features: self.final_conv = ConvNormAct(prev_width, cfg.num_features, kernel_size=1, **na_args) self.num_features = cfg.num_features else: final_act = cfg.linear_out or cfg.preact self.final_conv = get_act_layer(cfg.act_layer)() if final_act else nn.Identity() self.num_features = prev_width self.head = ClassifierHead( in_chs=self.num_features, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate) named_apply(partial(_init_weights, zero_init_last=zero_init_last), self) def _get_stage_args(self, cfg: RegNetCfg, default_stride=2, output_stride=32, drop_path_rate=0.): # Generate RegNet ws per block widths, num_stages, _, _ = generate_regnet(cfg.wa, cfg.w0, cfg.wm, cfg.depth) # Convert to per stage format stage_widths, stage_depths = np.unique(widths, return_counts=True) # Use the same group width, bottleneck mult and stride for each stage stage_groups = [cfg.group_size for _ in range(num_stages)] stage_bottle_ratios = [cfg.bottle_ratio for _ in range(num_stages)] stage_strides = [] stage_dilations = [] net_stride = 2 dilation = 1 for _ in range(num_stages): if net_stride >= output_stride: dilation *= default_stride stride = 1 else: stride = default_stride net_stride *= stride stage_strides.append(stride) stage_dilations.append(dilation) stage_dpr = np.split(np.linspace(0, drop_path_rate, cfg.depth), np.cumsum(stage_depths[:-1])) # Adjust the compatibility of ws and gws stage_widths, stage_groups = adjust_widths_groups_comp(stage_widths, stage_bottle_ratios, stage_groups) arg_names = ['out_chs', 'stride', 'dilation', 'depth', 'bottle_ratio', 'group_size', 'drop_path_rates'] per_stage_args = [ dict(zip(arg_names, params)) for params in zip(stage_widths, stage_strides, stage_dilations, stage_depths, stage_bottle_ratios, stage_groups, stage_dpr)] common_args = dict( downsample=cfg.downsample, se_ratio=cfg.se_ratio, linear_out=cfg.linear_out, act_layer=cfg.act_layer, norm_layer=cfg.norm_layer) return per_stage_args, common_args def get_classifier(self): return self.head.fc def reset_classifier(self, num_classes, global_pool='avg'): self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) def forward_features(self, x): for block in list(self.children())[:-1]: x = block(x) return x def forward(self, x): for block in self.children(): x = block(x) return x def _init_weights(module, name='', zero_init_last=False): if isinstance(module, nn.Conv2d): fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels fan_out //= module.groups module.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Linear): nn.init.normal_(module.weight, mean=0.0, std=0.01) if module.bias is not None: nn.init.zeros_(module.bias) elif zero_init_last and hasattr(module, 'zero_init_last'): module.zero_init_last() def _filter_fn(state_dict): """ convert patch embedding weight from manual patchify + linear proj to conv""" if 'model' in state_dict: # For DeiT trained regnety_160 pretraiend model state_dict = state_dict['model'] return state_dict def _create_regnet(variant, pretrained, **kwargs): return build_model_with_cfg( RegNet, variant, pretrained, default_cfg=default_cfgs[variant], model_cfg=model_cfgs[variant], pretrained_filter_fn=_filter_fn, **kwargs) @register_model def regnetx_002(pretrained=False, **kwargs): """RegNetX-200MF""" return _create_regnet('regnetx_002', pretrained, **kwargs) @register_model def regnetx_004(pretrained=False, **kwargs): """RegNetX-400MF""" return _create_regnet('regnetx_004', pretrained, **kwargs) @register_model def regnetx_006(pretrained=False, **kwargs): """RegNetX-600MF""" return _create_regnet('regnetx_006', pretrained, **kwargs) @register_model def regnetx_008(pretrained=False, **kwargs): """RegNetX-800MF""" return _create_regnet('regnetx_008', pretrained, **kwargs) @register_model def regnetx_016(pretrained=False, **kwargs): """RegNetX-1.6GF""" return _create_regnet('regnetx_016', pretrained, **kwargs) @register_model def regnetx_032(pretrained=False, **kwargs): """RegNetX-3.2GF""" return _create_regnet('regnetx_032', pretrained, **kwargs) @register_model def regnetx_040(pretrained=False, **kwargs): """RegNetX-4.0GF""" return _create_regnet('regnetx_040', pretrained, **kwargs) @register_model def regnetx_064(pretrained=False, **kwargs): """RegNetX-6.4GF""" return _create_regnet('regnetx_064', pretrained, **kwargs) @register_model def regnetx_080(pretrained=False, **kwargs): """RegNetX-8.0GF""" return _create_regnet('regnetx_080', pretrained, **kwargs) @register_model def regnetx_120(pretrained=False, **kwargs): """RegNetX-12GF""" return _create_regnet('regnetx_120', pretrained, **kwargs) @register_model def regnetx_160(pretrained=False, **kwargs): """RegNetX-16GF""" return _create_regnet('regnetx_160', pretrained, **kwargs) @register_model def regnetx_320(pretrained=False, **kwargs): """RegNetX-32GF""" return _create_regnet('regnetx_320', pretrained, **kwargs) @register_model def regnety_002(pretrained=False, **kwargs): """RegNetY-200MF""" return _create_regnet('regnety_002', pretrained, **kwargs) @register_model def regnety_004(pretrained=False, **kwargs): """RegNetY-400MF""" return _create_regnet('regnety_004', pretrained, **kwargs) @register_model def regnety_006(pretrained=False, **kwargs): """RegNetY-600MF""" return _create_regnet('regnety_006', pretrained, **kwargs) @register_model def regnety_008(pretrained=False, **kwargs): """RegNetY-800MF""" return _create_regnet('regnety_008', pretrained, **kwargs) @register_model def regnety_016(pretrained=False, **kwargs): """RegNetY-1.6GF""" return _create_regnet('regnety_016', pretrained, **kwargs) @register_model def regnety_032(pretrained=False, **kwargs): """RegNetY-3.2GF""" return _create_regnet('regnety_032', pretrained, **kwargs) @register_model def regnety_040(pretrained=False, **kwargs): """RegNetY-4.0GF""" return _create_regnet('regnety_040', pretrained, **kwargs) @register_model def regnety_064(pretrained=False, **kwargs): """RegNetY-6.4GF""" return _create_regnet('regnety_064', pretrained, **kwargs) @register_model def regnety_080(pretrained=False, **kwargs): """RegNetY-8.0GF""" return _create_regnet('regnety_080', pretrained, **kwargs) @register_model def regnety_120(pretrained=False, **kwargs): """RegNetY-12GF""" return _create_regnet('regnety_120', pretrained, **kwargs) @register_model def regnety_160(pretrained=False, **kwargs): """RegNetY-16GF""" return _create_regnet('regnety_160', pretrained, **kwargs) @register_model def regnety_320(pretrained=False, **kwargs): """RegNetY-32GF""" return _create_regnet('regnety_320', pretrained, **kwargs) @register_model def regnety_040s_gn(pretrained=False, **kwargs): """RegNetY-4.0GF w/ GroupNorm """ return _create_regnet('regnety_040s_gn', pretrained, **kwargs) @register_model def regnetv_040(pretrained=False, **kwargs): """""" return _create_regnet('regnetv_040', pretrained, **kwargs) @register_model def regnetw_040(pretrained=False, **kwargs): """""" return _create_regnet('regnetw_040', pretrained, **kwargs) @register_model def regnetz_005(pretrained=False, **kwargs): """RegNetZ-500MF NOTE: config found in https://github.com/facebookresearch/ClassyVision/blob/main/classy_vision/models/regnet.py but it's not clear it is equivalent to paper model as not detailed in the paper. """ return _create_regnet('regnetz_005', pretrained, zero_init_last=False, **kwargs) @register_model def regnetz_040(pretrained=False, **kwargs): """RegNetZ-4.0GF NOTE: config found in https://github.com/facebookresearch/ClassyVision/blob/main/classy_vision/models/regnet.py but it's not clear it is equivalent to paper model as not detailed in the paper. """ return _create_regnet('regnetz_040', pretrained, zero_init_last=False, **kwargs)