""" Twins A PyTorch impl of : `Twins: Revisiting the Design of Spatial Attention in Vision Transformers` - https://arxiv.org/pdf/2104.13840.pdf Code/weights from https://github.com/Meituan-AutoML/Twins, original copyright/license info below """ # -------------------------------------------------------- # Twins # Copyright (c) 2021 Meituan # Licensed under The Apache 2.0 License [see LICENSE for details] # Written by Xinjie Li, Xiangxiang Chu # -------------------------------------------------------- import math from copy import deepcopy from typing import Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from functools import partial from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from .layers import Mlp, DropPath, to_2tuple, trunc_normal_ from .fx_features import register_notrace_module from .registry import register_model from .vision_transformer import Attention from .helpers import build_model_with_cfg def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embeds.0.proj', 'classifier': 'head', **kwargs } default_cfgs = { 'twins_pcpvt_small': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_pcpvt_small-e70e7e7a.pth', ), 'twins_pcpvt_base': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_pcpvt_base-e5ecb09b.pth', ), 'twins_pcpvt_large': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_pcpvt_large-d273f802.pth', ), 'twins_svt_small': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_svt_small-42e5f78c.pth', ), 'twins_svt_base': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_svt_base-c2265010.pth', ), 'twins_svt_large': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_svt_large-90f6aaa9.pth', ), } Size_ = Tuple[int, int] @register_notrace_module # reason: FX can't symbolically trace control flow in forward method class LocallyGroupedAttn(nn.Module): """ LSA: self attention within a group """ def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., ws=1): assert ws != 1 super(LocallyGroupedAttn, self).__init__() assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." self.dim = dim self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=True) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.ws = ws def forward(self, x, size: Size_): # There are two implementations for this function, zero padding or mask. We don't observe obvious difference for # both. You can choose any one, we recommend forward_padding because it's neat. However, # the masking implementation is more reasonable and accurate. B, N, C = x.shape H, W = size x = x.view(B, H, W, C) pad_l = pad_t = 0 pad_r = (self.ws - W % self.ws) % self.ws pad_b = (self.ws - H % self.ws) % self.ws x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) _, Hp, Wp, _ = x.shape _h, _w = Hp // self.ws, Wp // self.ws x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3) qkv = self.qkv(x).reshape( B, _h * _w, self.ws * self.ws, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5) q, k, v = qkv[0], qkv[1], qkv[2] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C) x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C) if pad_r > 0 or pad_b > 0: x = x[:, :H, :W, :].contiguous() x = x.reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x # def forward_mask(self, x, size: Size_): # B, N, C = x.shape # H, W = size # x = x.view(B, H, W, C) # pad_l = pad_t = 0 # pad_r = (self.ws - W % self.ws) % self.ws # pad_b = (self.ws - H % self.ws) % self.ws # x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) # _, Hp, Wp, _ = x.shape # _h, _w = Hp // self.ws, Wp // self.ws # mask = torch.zeros((1, Hp, Wp), device=x.device) # mask[:, -pad_b:, :].fill_(1) # mask[:, :, -pad_r:].fill_(1) # # x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3) # B, _h, _w, ws, ws, C # mask = mask.reshape(1, _h, self.ws, _w, self.ws).transpose(2, 3).reshape(1, _h * _w, self.ws * self.ws) # attn_mask = mask.unsqueeze(2) - mask.unsqueeze(3) # 1, _h*_w, ws*ws, ws*ws # attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-1000.0)).masked_fill(attn_mask == 0, float(0.0)) # qkv = self.qkv(x).reshape( # B, _h * _w, self.ws * self.ws, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5) # # n_h, B, _w*_h, nhead, ws*ws, dim # q, k, v = qkv[0], qkv[1], qkv[2] # B, _h*_w, n_head, ws*ws, dim_head # attn = (q @ k.transpose(-2, -1)) * self.scale # B, _h*_w, n_head, ws*ws, ws*ws # attn = attn + attn_mask.unsqueeze(2) # attn = attn.softmax(dim=-1) # attn = self.attn_drop(attn) # attn @v -> B, _h*_w, n_head, ws*ws, dim_head # attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C) # x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C) # if pad_r > 0 or pad_b > 0: # x = x[:, :H, :W, :].contiguous() # x = x.reshape(B, N, C) # x = self.proj(x) # x = self.proj_drop(x) # return x class GlobalSubSampleAttn(nn.Module): """ GSA: using a key to summarize the information for a group to be efficient. """ def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., sr_ratio=1): super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." self.dim = dim self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.q = nn.Linear(dim, dim, bias=True) self.kv = nn.Linear(dim, dim * 2, bias=True) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.sr_ratio = sr_ratio if sr_ratio > 1: self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) self.norm = nn.LayerNorm(dim) else: self.sr = None self.norm = None def forward(self, x, size: Size_): B, N, C = x.shape q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) if self.sr is not None: x = x.permute(0, 2, 1).reshape(B, C, *size) x = self.sr(x).reshape(B, C, -1).permute(0, 2, 1) x = self.norm(x) kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) k, v = kv[0], kv[1] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4., drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, ws=None): super().__init__() self.norm1 = norm_layer(dim) if ws is None: self.attn = Attention(dim, num_heads, False, None, attn_drop, drop) elif ws == 1: self.attn = GlobalSubSampleAttn(dim, num_heads, attn_drop, drop, sr_ratio) else: self.attn = LocallyGroupedAttn(dim, num_heads, attn_drop, drop, ws) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, size: Size_): x = x + self.drop_path(self.attn(self.norm1(x), size)) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PosConv(nn.Module): # PEG from https://arxiv.org/abs/2102.10882 def __init__(self, in_chans, embed_dim=768, stride=1): super(PosConv, self).__init__() self.proj = nn.Sequential(nn.Conv2d(in_chans, embed_dim, 3, stride, 1, bias=True, groups=embed_dim), ) self.stride = stride def forward(self, x, size: Size_): B, N, C = x.shape cnn_feat_token = x.transpose(1, 2).view(B, C, *size) x = self.proj(cnn_feat_token) if self.stride == 1: x += cnn_feat_token x = x.flatten(2).transpose(1, 2) return x def no_weight_decay(self): return ['proj.%d.weight' % i for i in range(4)] class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \ f"img_size {img_size} should be divided by patch_size {patch_size}." self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1] self.num_patches = self.H * self.W self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) self.norm = nn.LayerNorm(embed_dim) def forward(self, x) -> Tuple[torch.Tensor, Size_]: B, C, H, W = x.shape x = self.proj(x).flatten(2).transpose(1, 2) x = self.norm(x) out_size = (H // self.patch_size[0], W // self.patch_size[1]) return x, out_size class Twins(nn.Module): """ Twins Vision Transfomer (Revisiting Spatial Attention) Adapted from PVT (PyramidVisionTransformer) class at https://github.com/whai362/PVT.git """ def __init__( self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, global_pool='avg', embed_dims=(64, 128, 256, 512), num_heads=(1, 2, 4, 8), mlp_ratios=(4, 4, 4, 4), depths=(3, 4, 6, 3), sr_ratios=(8, 4, 2, 1), wss=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6), block_cls=Block): super().__init__() self.num_classes = num_classes self.global_pool = global_pool self.depths = depths self.embed_dims = embed_dims self.num_features = embed_dims[-1] self.grad_checkpointing = False img_size = to_2tuple(img_size) prev_chs = in_chans self.patch_embeds = nn.ModuleList() self.pos_drops = nn.ModuleList() for i in range(len(depths)): self.patch_embeds.append(PatchEmbed(img_size, patch_size, prev_chs, embed_dims[i])) self.pos_drops.append(nn.Dropout(p=drop_rate)) prev_chs = embed_dims[i] img_size = tuple(t // patch_size for t in img_size) patch_size = 2 self.blocks = nn.ModuleList() dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule cur = 0 for k in range(len(depths)): _block = nn.ModuleList([block_cls( dim=embed_dims[k], num_heads=num_heads[k], mlp_ratio=mlp_ratios[k], drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[k], ws=1 if wss is None or i % 2 == 1 else wss[k]) for i in range(depths[k])]) self.blocks.append(_block) cur += depths[k] self.pos_block = nn.ModuleList([PosConv(embed_dim, embed_dim) for embed_dim in embed_dims]) self.norm = norm_layer(self.num_features) # classification head self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() # init weights self.apply(self._init_weights) @torch.jit.ignore def no_weight_decay(self): return set(['pos_block.' + n for n, p in self.pos_block.named_parameters()]) @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^patch_embeds.0', # stem and embed blocks=[ (r'^(?:blocks|patch_embeds|pos_block)\.(\d+)', None), ('^norm', (99999,)) ] if coarse else [ (r'^blocks\.(\d+)\.(\d+)', None), (r'^(?:patch_embeds|pos_block)\.(\d+)', (0,)), (r'^norm', (99999,)) ] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): assert not enable, 'gradient checkpointing not supported' @torch.jit.ignore def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=None): self.num_classes = num_classes if global_pool is not None: assert global_pool in ('', 'avg') self.global_pool = global_pool self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward_features(self, x): B = x.shape[0] for i, (embed, drop, blocks, pos_blk) in enumerate( zip(self.patch_embeds, self.pos_drops, self.blocks, self.pos_block)): x, size = embed(x) x = drop(x) for j, blk in enumerate(blocks): x = blk(x, size) if j == 0: x = pos_blk(x, size) # PEG here if i < len(self.depths) - 1: x = x.reshape(B, *size, -1).permute(0, 3, 1, 2).contiguous() x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False): if self.global_pool == 'avg': x = x.mean(dim=1) return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _create_twins(variant, pretrained=False, **kwargs): if kwargs.get('features_only', None): raise RuntimeError('features_only not implemented for Vision Transformer models.') model = build_model_with_cfg(Twins, variant, pretrained, **kwargs) return model @register_model def twins_pcpvt_small(pretrained=False, **kwargs): model_kwargs = dict( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], **kwargs) return _create_twins('twins_pcpvt_small', pretrained=pretrained, **model_kwargs) @register_model def twins_pcpvt_base(pretrained=False, **kwargs): model_kwargs = dict( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1], **kwargs) return _create_twins('twins_pcpvt_base', pretrained=pretrained, **model_kwargs) @register_model def twins_pcpvt_large(pretrained=False, **kwargs): model_kwargs = dict( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1], **kwargs) return _create_twins('twins_pcpvt_large', pretrained=pretrained, **model_kwargs) @register_model def twins_svt_small(pretrained=False, **kwargs): model_kwargs = dict( patch_size=4, embed_dims=[64, 128, 256, 512], num_heads=[2, 4, 8, 16], mlp_ratios=[4, 4, 4, 4], depths=[2, 2, 10, 4], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs) return _create_twins('twins_svt_small', pretrained=pretrained, **model_kwargs) @register_model def twins_svt_base(pretrained=False, **kwargs): model_kwargs = dict( patch_size=4, embed_dims=[96, 192, 384, 768], num_heads=[3, 6, 12, 24], mlp_ratios=[4, 4, 4, 4], depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs) return _create_twins('twins_svt_base', pretrained=pretrained, **model_kwargs) @register_model def twins_svt_large(pretrained=False, **kwargs): model_kwargs = dict( patch_size=4, embed_dims=[128, 256, 512, 1024], num_heads=[4, 8, 16, 32], mlp_ratios=[4, 4, 4, 4], depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs) return _create_twins('twins_svt_large', pretrained=pretrained, **model_kwargs)