""" Relative Position Vision Transformer (ViT) in PyTorch Hacked together by / Copyright 2022, Ross Wightman """ import math import logging from functools import partial from collections import OrderedDict from typing import Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.checkpoint import checkpoint from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD from .helpers import build_model_with_cfg, resolve_pretrained_cfg, named_apply from .layers import PatchEmbed, Mlp, DropPath, trunc_normal_, lecun_normal_, to_2tuple from .registry import register_model _logger = logging.getLogger(__name__) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs } default_cfgs = { 'vit_relpos_base_patch32_plus_rpn_256': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_replos_base_patch32_plus_rpn_256-sw-dd486f51.pth', input_size=(3, 256, 256)), 'vit_relpos_base_patch16_plus_240': _cfg(url='', input_size=(3, 240, 240)), 'vit_relpos_base_patch16_rpn_224': _cfg(url=''), 'vit_relpos_base_patch16_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_base_patch16_224-sw-49049aed.pth'), } def gen_relative_position_index(win_size: Tuple[int, int], class_token: int = 0) -> torch.Tensor: # cut and paste w/ modifications from swin / beit codebase # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window window_area = win_size[0] * win_size[1] coords = torch.stack(torch.meshgrid([torch.arange(win_size[0]), torch.arange(win_size[1])])).flatten(1) # 2, Wh, Ww relative_coords = coords[:, :, None] - coords[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += win_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += win_size[1] - 1 relative_coords[:, :, 0] *= 2 * win_size[1] - 1 if class_token: num_relative_distance = (2 * win_size[0] - 1) * (2 * win_size[1] - 1) + 3 relative_position_index = torch.zeros(size=(window_area + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = num_relative_distance - 3 relative_position_index[0:, 0] = num_relative_distance - 2 relative_position_index[0, 0] = num_relative_distance - 1 else: relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww return relative_position_index def gen_relative_position_log(win_size: Tuple[int, int]) -> torch.Tensor: """Method initializes the pair-wise relative positions to compute the positional biases.""" coordinates = torch.stack(torch.meshgrid([torch.arange(win_size[0]), torch.arange(win_size[1])])).flatten(1) relative_coords = coordinates[:, :, None] - coordinates[:, None, :] relative_coords = relative_coords.permute(1, 2, 0).float() relative_coordinates_log = torch.sign(relative_coords) * torch.log(1.0 + relative_coords.abs()) return relative_coordinates_log class RelPosMlp(nn.Module): # based on timm swin-v2 impl def __init__(self, window_size, num_heads=8, hidden_dim=32, class_token=False): super().__init__() self.window_size = window_size self.window_area = self.window_size[0] * self.window_size[1] self.class_token = 1 if class_token else 0 self.num_heads = num_heads self.mlp = Mlp( 2, # x, y hidden_features=min(128, hidden_dim * num_heads), out_features=num_heads, act_layer=nn.ReLU, drop=(0.125, 0.) ) self.register_buffer( 'rel_coords_log', gen_relative_position_log(window_size), persistent=False ) def get_bias(self) -> torch.Tensor: relative_position_bias = self.mlp(self.rel_coords_log).permute(2, 0, 1).unsqueeze(0) if self.class_token: relative_position_bias = F.pad(relative_position_bias, [self.class_token, 0, self.class_token, 0]) return relative_position_bias def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None): return attn + self.get_bias() class RelPosBias(nn.Module): def __init__(self, window_size, num_heads, class_token=False): super().__init__() self.window_size = window_size self.window_area = window_size[0] * window_size[1] self.class_token = 1 if class_token else 0 self.bias_shape = (self.window_area + self.class_token,) * 2 + (num_heads,) num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 * self.class_token self.relative_position_bias_table = nn.Parameter(torch.zeros(num_relative_distance, num_heads)) self.register_buffer( "relative_position_index", gen_relative_position_index(self.window_size, class_token=self.class_token), persistent=False, ) self.init_weights() def init_weights(self): trunc_normal_(self.relative_position_bias_table, std=.02) def get_bias(self) -> torch.Tensor: relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.bias_shape) # win_h * win_w, win_h * win_w, num_heads relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() return relative_position_bias def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None): return attn + self.get_bias() class RelPosAttention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, rel_pos_cls=None, attn_drop=0., proj_drop=0.): super().__init__() assert dim % num_heads == 0, 'dim should be divisible by num_heads' self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.rel_pos = rel_pos_cls(num_heads=num_heads) if rel_pos_cls else None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale if self.rel_pos is not None: attn = self.rel_pos(attn, shared_rel_pos=shared_rel_pos) elif shared_rel_pos is not None: attn = attn + shared_rel_pos attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class LayerScale(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x): return x.mul_(self.gamma) if self.inplace else x * self.gamma class RelPosBlock(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4., qkv_bias=False, rel_pos_cls=None, init_values=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn = RelPosAttention( dim, num_heads, qkv_bias=qkv_bias, rel_pos_cls=rel_pos_cls, attn_drop=attn_drop, proj_drop=drop) self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop) self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None): x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), shared_rel_pos=shared_rel_pos))) x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) return x class ResPostRelPosBlock(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4., qkv_bias=False, rel_pos_cls=None, init_values=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.init_values = init_values self.attn = RelPosAttention( dim, num_heads, qkv_bias=qkv_bias, rel_pos_cls=rel_pos_cls, attn_drop=attn_drop, proj_drop=drop) self.norm1 = norm_layer(dim) self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop) self.norm2 = norm_layer(dim) self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.init_weights() def init_weights(self): # NOTE this init overrides that base model init with specific changes for the block type if self.init_values is not None: nn.init.constant_(self.norm1.weight, self.init_values) nn.init.constant_(self.norm2.weight, self.init_values) def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None): x = x + self.drop_path1(self.norm1(self.attn(x, shared_rel_pos=shared_rel_pos))) x = x + self.drop_path2(self.norm2(self.mlp(x))) return x class VisionTransformerRelPos(nn.Module): """ Vision Transformer w/ Relative Position Bias """ def __init__( self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='avg', embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, init_values=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., weight_init='skip', class_token=False, rel_pos_type='mlp', shared_rel_pos=False, fc_norm=False, embed_layer=PatchEmbed, norm_layer=None, act_layer=None, block_fn=RelPosBlock): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels num_classes (int): number of classes for classification head global_pool (str): type of global pooling for final sequence (default: 'token') embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True init_values: (float): layer-scale init values drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate weight_init (str): weight init scheme class_token (bool): use class token (default: False) rel_pos_ty pe (str): type of relative position shared_rel_pos (bool): share relative pos across all blocks fc_norm (bool): use pre classifier norm embed_layer (nn.Module): patch embedding layer norm_layer: (nn.Module): normalization layer act_layer: (nn.Module): MLP activation layer """ super().__init__() assert global_pool in ('', 'avg', 'token') assert class_token or global_pool != 'token' norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) act_layer = act_layer or nn.GELU self.num_classes = num_classes self.global_pool = global_pool self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.num_tokens = 1 if class_token else 0 self.grad_checkpointing = False self.patch_embed = embed_layer( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) feat_size = self.patch_embed.grid_size rel_pos_cls = RelPosMlp if rel_pos_type == 'mlp' else RelPosBias rel_pos_cls = partial(rel_pos_cls, window_size=feat_size, class_token=class_token) self.shared_rel_pos = None if shared_rel_pos: self.shared_rel_pos = rel_pos_cls(num_heads=num_heads) # NOTE shared rel pos currently mutually exclusive w/ per-block, but could support both... rel_pos_cls = None self.cls_token = nn.Parameter(torch.zeros(1, self.num_tokens, embed_dim)) if self.num_tokens else None dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ block_fn( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, rel_pos_cls=rel_pos_cls, init_values=init_values, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer) for i in range(depth)]) self.norm = norm_layer(embed_dim) if not fc_norm else nn.Identity() # Classifier Head self.fc_norm = norm_layer(embed_dim) if fc_norm else nn.Identity() self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() if weight_init != 'skip': self.init_weights(weight_init) def init_weights(self, mode=''): assert mode in ('jax', 'moco', '') if self.cls_token is not None: nn.init.normal_(self.cls_token, std=1e-6) # FIXME weight init scheme using PyTorch defaults curently #named_apply(get_init_weights_vit(mode, head_bias), self) @torch.jit.ignore def no_weight_decay(self): return {'cls_token'} @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^cls_token|patch_embed', # stem and embed blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] ) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.head def reset_classifier(self, num_classes: int, global_pool=None): self.num_classes = num_classes if global_pool is not None: assert global_pool in ('', 'avg', 'token') self.global_pool = global_pool self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): x = self.patch_embed(x) if self.cls_token is not None: x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) shared_rel_pos = self.shared_rel_pos.get_bias() if self.shared_rel_pos is not None else None for blk in self.blocks: if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint(blk, x, shared_rel_pos=shared_rel_pos) else: x = blk(x, shared_rel_pos=shared_rel_pos) x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False): if self.global_pool: x = x[:, self.num_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] x = self.fc_norm(x) return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _create_vision_transformer_relpos(variant, pretrained=False, **kwargs): if kwargs.get('features_only', None): raise RuntimeError('features_only not implemented for Vision Transformer models.') model = build_model_with_cfg(VisionTransformerRelPos, variant, pretrained, **kwargs) return model @register_model def vit_relpos_base_patch32_plus_rpn_256(pretrained=False, **kwargs): """ ViT-Base (ViT-B/32+) w/ relative log-coord position and residual post-norm, no class token """ model_kwargs = dict( patch_size=32, embed_dim=896, depth=12, num_heads=14, init_values=1e-5, block_fn=ResPostRelPosBlock, **kwargs) model = _create_vision_transformer_relpos( 'vit_relpos_base_patch32_plus_rpn_256', pretrained=pretrained, **model_kwargs) return model @register_model def vit_relpos_base_patch16_plus_240(pretrained=False, **kwargs): """ ViT-Base (ViT-B/16+) w/ relative log-coord position, no class token """ model_kwargs = dict(patch_size=16, embed_dim=896, depth=12, num_heads=14, init_values=1e-5, **kwargs) model = _create_vision_transformer_relpos('vit_relpos_base_patch16_plus_240', pretrained=pretrained, **model_kwargs) return model @register_model def vit_relpos_base_patch16_224(pretrained=False, **kwargs): """ ViT-Base (ViT-B/16) w/ relative log-coord position, no class token """ model_kwargs = dict( patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, init_values=1e-5, fc_norm=True, **kwargs) model = _create_vision_transformer_relpos('vit_relpos_base_patch16_224', pretrained=pretrained, **model_kwargs) return model @register_model def vit_relpos_base_patch16_rpn_224(pretrained=False, **kwargs): """ ViT-Base (ViT-B/16) w/ relative log-coord position and residual post-norm, no class token """ model_kwargs = dict( patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, init_values=1e-5, block_fn=ResPostRelPosBlock, **kwargs) model = _create_vision_transformer_relpos('vit_relpos_base_patch16_rpn_224', pretrained=pretrained, **model_kwargs) return model