from torch import optim as optim from timm.optim import Nadam, RMSpropTF, AdamW, RAdam, NovoGrad, Lookahead def add_weight_decay(model, weight_decay=1e-5, skip_list=()): decay = [] no_decay = [] for name, param in model.named_parameters(): if not param.requires_grad: continue # frozen weights if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list: no_decay.append(param) else: decay.append(param) return [ {'params': no_decay, 'weight_decay': 0.}, {'params': decay, 'weight_decay': weight_decay}] def create_optimizer(args, model, filter_bias_and_bn=True): opt_lower = args.opt.lower() weight_decay = args.weight_decay if opt_lower == 'adamw' or opt_lower == 'radam': # compensate for the way current AdamW and RAdam optimizers # apply the weight-decay weight_decay /= args.lr if weight_decay and filter_bias_and_bn: parameters = add_weight_decay(model, weight_decay) weight_decay = 0. else: parameters = model.parameters() opt_split = opt_lower.split('_') opt_lower = opt_split[-1] if opt_lower == 'sgd': optimizer = optim.SGD( parameters, lr=args.lr, momentum=args.momentum, weight_decay=weight_decay, nesterov=True) elif opt_lower == 'adam': optimizer = optim.Adam( parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps) elif opt_lower == 'adamw': optimizer = AdamW( parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps) elif opt_lower == 'nadam': optimizer = Nadam( parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps) elif opt_lower == 'radam': optimizer = RAdam( parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps) elif opt_lower == 'adadelta': optimizer = optim.Adadelta( parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps) elif opt_lower == 'rmsprop': optimizer = optim.RMSprop( parameters, lr=args.lr, alpha=0.9, eps=args.opt_eps, momentum=args.momentum, weight_decay=weight_decay) elif opt_lower == 'rmsproptf': optimizer = RMSpropTF( parameters, lr=args.lr, alpha=0.9, eps=args.opt_eps, momentum=args.momentum, weight_decay=weight_decay) elif opt_lower == 'novograd': optimizer = NovoGrad(parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps) else: assert False and "Invalid optimizer" raise ValueError if len(opt_split) > 1: if opt_split[0] == 'lookahead': optimizer = Lookahead(optimizer) return optimizer