""" Halo Self Attention Paper: `Scaling Local Self-Attention for Parameter Efficient Visual Backbones` - https://arxiv.org/abs/2103.12731 @misc{2103.12731, Author = {Ashish Vaswani and Prajit Ramachandran and Aravind Srinivas and Niki Parmar and Blake Hechtman and Jonathon Shlens}, Title = {Scaling Local Self-Attention for Parameter Efficient Visual Backbones}, Year = {2021}, } Status: This impl is a WIP, there is no official ref impl and some details in paper weren't clear to me. Trying to match the 'H1' variant in the paper, my parameter counts are 2M less and the model is extremely slow. Something isn't right. However, the models do appear to train and experimental variants with attn in C4 and/or C5 stages are tolerable speed. Hacked together by / Copyright 2021 Ross Wightman """ from typing import Tuple, List import torch from torch import nn import torch.nn.functional as F from .weight_init import trunc_normal_ def rel_logits_1d(q, rel_k, permute_mask: List[int]): """ Compute relative logits along one dimension As per: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2 Originally from: `Attention Augmented Convolutional Networks` - https://arxiv.org/abs/1904.09925 Args: q: (batch, height, width, dim) rel_k: (2 * window - 1, dim) permute_mask: permute output dim according to this """ B, H, W, dim = q.shape rel_size = rel_k.shape[0] win_size = (rel_size + 1) // 2 x = (q @ rel_k.transpose(-1, -2)) x = x.reshape(-1, W, rel_size) # pad to shift from relative to absolute indexing x_pad = F.pad(x, [0, 1]).flatten(1) x_pad = F.pad(x_pad, [0, rel_size - W]) # reshape and slice out the padded elements x_pad = x_pad.reshape(-1, W + 1, rel_size) x = x_pad[:, :W, win_size - 1:] # reshape and tile x = x.reshape(B, H, 1, W, win_size).expand(-1, -1, win_size, -1, -1) return x.permute(permute_mask) class PosEmbedRel(nn.Module): """ Relative Position Embedding As per: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2 Originally from: `Attention Augmented Convolutional Networks` - https://arxiv.org/abs/1904.09925 """ def __init__(self, block_size, win_size, dim_head, scale): """ Args: block_size (int): block size win_size (int): neighbourhood window size dim_head (int): attention head dim scale (float): scale factor (for init) """ super().__init__() self.block_size = block_size self.dim_head = dim_head self.scale = scale self.height_rel = nn.Parameter(torch.randn(win_size * 2 - 1, dim_head) * self.scale) self.width_rel = nn.Parameter(torch.randn(win_size * 2 - 1, dim_head) * self.scale) def forward(self, q): B, BB, HW, _ = q.shape # relative logits in width dimension. q = q.reshape(-1, self.block_size, self.block_size, self.dim_head) rel_logits_w = rel_logits_1d(q, self.width_rel, permute_mask=(0, 1, 3, 2, 4)) # relative logits in height dimension. q = q.transpose(1, 2) rel_logits_h = rel_logits_1d(q, self.height_rel, permute_mask=(0, 3, 1, 4, 2)) rel_logits = rel_logits_h + rel_logits_w rel_logits = rel_logits.reshape(B, BB, HW, -1) return rel_logits class HaloAttn(nn.Module): """ Halo Attention Paper: `Scaling Local Self-Attention for Parameter Efficient Visual Backbones` - https://arxiv.org/abs/2103.12731 """ def __init__( self, dim, dim_out=None, stride=1, num_heads=8, dim_head=None, block_size=8, halo_size=3, qkv_bias=False): super().__init__() dim_out = dim_out or dim assert dim_out % num_heads == 0 self.stride = stride self.num_heads = num_heads self.dim_head = dim_head or dim // num_heads self.dim_qk = num_heads * self.dim_head self.dim_v = dim_out self.block_size = block_size self.halo_size = halo_size self.win_size = block_size + halo_size * 2 # neighbourhood window size self.scale = self.dim_head ** -0.5 # FIXME not clear if this stride behaviour is what the paper intended # Also, the paper mentions using a 3D conv for dealing with the blocking/gather, and leaving # data in unfolded block form. I haven't wrapped my head around how that'd look. self.q = nn.Conv2d(dim, self.dim_qk, 1, stride=self.stride, bias=qkv_bias) self.kv = nn.Conv2d(dim, self.dim_qk + self.dim_v, 1, bias=qkv_bias) self.pos_embed = PosEmbedRel( block_size=block_size // self.stride, win_size=self.win_size, dim_head=self.dim_head, scale=self.scale) def reset_parameters(self): std = self.q.weight.shape[1] ** -0.5 # fan-in trunc_normal_(self.q.weight, std=std) trunc_normal_(self.kv.weight, std=std) trunc_normal_(self.pos_embed.height_rel, std=self.scale) trunc_normal_(self.pos_embed.width_rel, std=self.scale) def forward(self, x): B, C, H, W = x.shape assert H % self.block_size == 0 and W % self.block_size == 0 num_h_blocks = H // self.block_size num_w_blocks = W // self.block_size num_blocks = num_h_blocks * num_w_blocks bs_stride = self.block_size // self.stride q = self.q(x) # unfold q = q.reshape(-1, self.dim_head, num_h_blocks, bs_stride, num_w_blocks, bs_stride).permute(0, 1, 3, 5, 2, 4) # B, num_heads * dim_head * block_size ** 2, num_blocks q = q.reshape(B * self.num_heads, self.dim_head, -1, num_blocks).transpose(1, 3) # B * num_heads, num_blocks, block_size ** 2, dim_head kv = self.kv(x) # generate overlapping windows for kv kv = F.pad(kv, [self.halo_size, self.halo_size, self.halo_size, self.halo_size]) kv = kv.unfold(2, self.win_size, self.block_size).unfold(3, self.win_size, self.block_size).reshape( B * self.num_heads, self.dim_head + (self.dim_v // self.num_heads), num_blocks, -1).permute(0, 2, 3, 1) # NOTE these two alternatives are equivalent, but above is the best balance of performance and clarity # if self.stride_tricks: # kv = F.pad(kv, [self.halo_size, self.halo_size, self.halo_size, self.halo_size]).contiguous() # kv = kv.as_strided(( # B, self.dim_qk + self.dim_v, self.win_size, self.win_size, num_h_blocks, num_w_blocks), # stride=(kv.stride(0), kv.stride(1), kv.shape[-1], 1, self.block_size * kv.shape[-1], self.block_size)) # else: # kv = F.unfold(kv, kernel_size=self.win_size, stride=self.block_size, padding=self.halo_size) # kv = kv.reshape( # B * self.num_heads, self.dim_head + (self.dim_v // self.num_heads), -1, num_blocks).transpose(1, 3) k, v = torch.split(kv, [self.dim_head, self.dim_v // self.num_heads], dim=-1) # B * num_heads, num_blocks, block_size ** 2, dim_head or dim_v // num_heads attn_logits = (q @ k.transpose(-1, -2)) * self.scale # FIXME should usual attn scale be applied? attn_logits = attn_logits + self.pos_embed(q) # B * num_heads, block_size ** 2, win_size ** 2 attn_out = attn_logits.softmax(dim=-1) attn_out = (attn_out @ v).transpose(1, 3) # B * num_heads, dim_v // num_heads, block_size ** 2, num_blocks # fold attn_out = attn_out.reshape(-1, bs_stride, bs_stride, num_h_blocks, num_w_blocks) attn_out = attn_out.permute(0, 3, 1, 4, 2).contiguous().view(B, self.dim_v, H // self.stride, W // self.stride) # B, dim_out, H // stride, W // stride return attn_out