#!/usr/bin/env python3 """ Checkpoint Cleaning Script Takes training checkpoints with GPU tensors, optimizer state, extra dict keys, etc. and outputs a CPU tensor checkpoint with only the `state_dict` along with SHA256 calculation for model zoo compatibility. Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman) """ import torch import argparse import os import hashlib import shutil from collections import OrderedDict from timm.models.helpers import load_state_dict from timm.utils import setup_default_logging parser = argparse.ArgumentParser(description='PyTorch Checkpoint Cleaner') parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--output', default='', type=str, metavar='PATH', help='output path') parser.add_argument('--use-ema', dest='use_ema', action='store_true', help='use ema version of weights if present') parser.add_argument('--clean-aux-bn', dest='clean_aux_bn', action='store_true', help='remove auxiliary batch norm layers (from SplitBN training) from checkpoint') _TEMP_NAME = './_checkpoint.pth' def main(): args = parser.parse_args() setup_default_logging() if os.path.exists(args.output): print("Error: Output filename ({}) already exists.".format(args.output)) exit(1) # Load an existing checkpoint to CPU, strip everything but the state_dict and re-save if args.checkpoint and os.path.isfile(args.checkpoint): print("=> Loading checkpoint '{}'".format(args.checkpoint)) state_dict = load_state_dict(args.checkpoint, use_ema=args.use_ema) new_state_dict = OrderedDict() for k, v in state_dict.items(): if args.clean_aux_bn and 'aux_bn' in k: # If all aux_bn keys are removed, the SplitBN layers will end up as normal and # load with the unmodified model using BatchNorm2d. continue name = k[7:] if k.startswith('module') else k new_state_dict[name] = v print("=> Loaded state_dict from '{}'".format(args.checkpoint)) try: torch.save(new_state_dict, _TEMP_NAME, _use_new_zipfile_serialization=False) except: torch.save(new_state_dict, _TEMP_NAME) with open(_TEMP_NAME, 'rb') as f: sha_hash = hashlib.sha256(f.read()).hexdigest() if args.output: checkpoint_root, checkpoint_base = os.path.split(args.output) checkpoint_base = os.path.splitext(checkpoint_base)[0] else: checkpoint_root = '' checkpoint_base = os.path.splitext(args.checkpoint)[0] final_filename = '-'.join([checkpoint_base, sha_hash[:8]]) + '.pth' shutil.move(_TEMP_NAME, os.path.join(checkpoint_root, final_filename)) print("=> Saved state_dict to '{}, SHA256: {}'".format(final_filename, sha_hash)) else: print("Error: Checkpoint ({}) doesn't exist".format(args.checkpoint)) if __name__ == '__main__': main()