Skip to content

Models

Architectures

ResNet / ResNeXt

(from torchvision with mods by myself)

DLA

DenseNet

(from torchvision)

  • DenseNet-121, DenseNet-169, DenseNet-201, DenseNet-161

Squeeze-and-Excitation ResNet/ResNeXt

(from Cadene with some pretrained weight additions by myself)

  • SENet-154, SE-ResNet-18, SE-ResNet-34, SE-ResNet-50, SE-ResNet-101, SE-ResNet-152, SE-ResNeXt-26 (32x4d), SE-ResNeXt50 (32x4d), SE-ResNeXt101 (32x4d)

Inception-V3

(from torchvision)

Inception-ResNet-V2 and Inception-V4

(from Cadene )

Xception

  • Original variant from Cadene
  • MXNet Gluon 'modified aligned' Xception-65 and 71 models from Gluon ModelZoo

PNasNet & NASNet-A

(from Cadene)

DPN

(from myself)

  • DPN-68, DPN-68b, DPN-92, DPN-98, DPN-131, DPN-107

EfficientNet

(from my standalone GenEfficientNet) - A generic model that implements many of the efficient models that utilize similar DepthwiseSeparable and InvertedResidual blocks

MobileNet-V3

(https://arxiv.org/abs/1905.02244)

HRNet

SelecSLS

TResNet

RegNet

VovNet V2 / V1

Use the --model arg to specify model for train, validation, inference scripts. Match the all lowercase creation fn for the model you'd like.

Pretrained Imagenet Weights

Self-trained Weights

Model Prec@1 (Err) Prec@5 (Err) Param # Image Scaling Image Size
efficientnet_b3a 81.874 (18.126) 95.840 (4.160) 12.23M bicubic 320 (1.0 crop)
efficientnet_b3 81.498 (18.502) 95.718 (4.282) 12.23M bicubic 300
skresnext50d_32x4d 81.278 (18.722) 95.366 (4.634) 27.5M bicubic 288 (1.0 crop)
efficientnet_b2a 80.608 (19.392) 95.310 (4.690) 9.11M bicubic 288 (1.0 crop)
mixnet_xl 80.478 (19.522) 94.932 (5.068) 11.90M bicubic 224
efficientnet_b2 80.402 (19.598) 95.076 (4.924) 9.11M bicubic 260
skresnext50d_32x4d 80.156 (19.844) 94.642 (5.358) 27.5M bicubic 224
resnext50_32x4d 79.762 (20.238) 94.600 (5.400) 25M bicubic 224
resnext50d_32x4d 79.674 (20.326) 94.868 (5.132) 25.1M bicubic 224
ese_vovnet39b 79.320 (20.680) 94.710 (5.290) 24.6M bicubic 224
resnetblur50 79.290 (20.710) 94.632 (5.368) 25.6M bicubic 224
resnet50 79.038 (20.962) 94.390 (5.610) 25.6M bicubic 224
mixnet_l 78.976 (21.024 94.184 (5.816) 7.33M bicubic 224
efficientnet_b1 78.692 (21.308) 94.086 (5.914) 7.79M bicubic 240
efficientnet_es 78.066 (21.934) 93.926 (6.074) 5.44M bicubic 224
seresnext26t_32x4d 77.998 (22.002) 93.708 (6.292) 16.8M bicubic 224
seresnext26tn_32x4d 77.986 (22.014) 93.746 (6.254) 16.8M bicubic 224
efficientnet_b0 77.698 (22.302) 93.532 (6.468) 5.29M bicubic 224
seresnext26d_32x4d 77.602 (22.398) 93.608 (6.392) 16.8M bicubic 224
mobilenetv2_120d 77.294 (22.706 93.502 (6.498) 5.8M bicubic 224
mixnet_m 77.256 (22.744) 93.418 (6.582) 5.01M bicubic 224
seresnext26_32x4d 77.104 (22.896) 93.316 (6.684) 16.8M bicubic 224
skresnet34 76.912 (23.088) 93.322 (6.678) 22.2M bicubic 224
ese_vovnet19b_dw 76.798 (23.202) 93.268 (6.732) 6.5M bicubic 224
resnet26d 76.68 (23.32) 93.166 (6.834) 16M bicubic 224
densenetblur121d 76.576 (23.424) 93.190 (6.810) 8.0M bicubic 224
mobilenetv2_140 76.524 (23.476) 92.990 (7.010) 6.1M bicubic 224
mixnet_s 75.988 (24.012) 92.794 (7.206) 4.13M bicubic 224
mobilenetv3_large_100 75.766 (24.234) 92.542 (7.458) 5.5M bicubic 224
mobilenetv3_rw 75.634 (24.366) 92.708 (7.292) 5.5M bicubic 224
mnasnet_a1 75.448 (24.552) 92.604 (7.396) 3.89M bicubic 224
resnet26 75.292 (24.708) 92.57 (7.43) 16M bicubic 224
fbnetc_100 75.124 (24.876) 92.386 (7.614) 5.6M bilinear 224
resnet34 75.110 (24.890) 92.284 (7.716) 22M bilinear 224
mobilenetv2_110d 75.052 (24.948) 92.180 (7.820) 4.5M bicubic 224
seresnet34 74.808 (25.192) 92.124 (7.876) 22M bilinear 224
mnasnet_b1 74.658 (25.342) 92.114 (7.886) 4.38M bicubic 224
spnasnet_100 74.084 (25.916) 91.818 (8.182) 4.42M bilinear 224
skresnet18 73.038 (26.962) 91.168 (8.832) 11.9M bicubic 224
mobilenetv2_100 72.978 (27.022) 91.016 (8.984) 3.5M bicubic 224
seresnet18 71.742 (28.258) 90.334 (9.666) 11.8M bicubic 224

Ported Weights

For the models below, the model code and weight porting from Tensorflow or MXNet Gluon to Pytorch was done by myself. There are weights/models ported by others included in this repository, they are not listed below.

Model Prec@1 (Err) Prec@5 (Err) Param # Image Scaling Image Size
tf_efficientnet_l2_ns *tfp 88.352 (11.648) 98.652 (1.348) 480 bicubic 800
tf_efficientnet_l2_ns TBD TBD 480 bicubic 800
tf_efficientnet_l2_ns_475 88.234 (11.766) 98.546 (1.454)f 480 bicubic 475
tf_efficientnet_l2_ns_475 *tfp 88.172 (11.828) 98.566 (1.434) 480 bicubic 475
tf_efficientnet_b7_ns *tfp 86.844 (13.156) 98.084 (1.916) 66.35 bicubic 600
tf_efficientnet_b7_ns 86.840 (13.160) 98.094 (1.906) 66.35 bicubic 600
tf_efficientnet_b6_ns 86.452 (13.548) 97.882 (2.118) 43.04 bicubic 528
tf_efficientnet_b6_ns *tfp 86.444 (13.556) 97.880 (2.120) 43.04 bicubic 528
tf_efficientnet_b5_ns *tfp 86.064 (13.936) 97.746 (2.254) 30.39 bicubic 456
tf_efficientnet_b5_ns 86.088 (13.912) 97.752 (2.248) 30.39 bicubic 456
tf_efficientnet_b8_ap *tfp 85.436 (14.564) 97.272 (2.728) 87.4 bicubic 672
tf_efficientnet_b8 *tfp 85.384 (14.616) 97.394 (2.606) 87.4 bicubic 672
tf_efficientnet_b8 85.370 (14.630) 97.390 (2.610) 87.4 bicubic 672
tf_efficientnet_b8_ap 85.368 (14.632) 97.294 (2.706) 87.4 bicubic 672
tf_efficientnet_b4_ns *tfp 85.298 (14.702) 97.504 (2.496) 19.34 bicubic 380
tf_efficientnet_b4_ns 85.162 (14.838) 97.470 (2.530) 19.34 bicubic 380
tf_efficientnet_b7_ap *tfp 85.154 (14.846) 97.244 (2.756) 66.35 bicubic 600
tf_efficientnet_b7_ap 85.118 (14.882) 97.252 (2.748) 66.35 bicubic 600
tf_efficientnet_b7 *tfp 84.940 (15.060) 97.214 (2.786) 66.35 bicubic 600
tf_efficientnet_b7 84.932 (15.068) 97.208 (2.792) 66.35 bicubic 600
tf_efficientnet_b6_ap 84.786 (15.214) 97.138 (2.862) 43.04 bicubic 528
tf_efficientnet_b6_ap *tfp 84.760 (15.240) 97.124 (2.876) 43.04 bicubic 528
tf_efficientnet_b5_ap *tfp 84.276 (15.724) 96.932 (3.068) 30.39 bicubic 456
tf_efficientnet_b5_ap 84.254 (15.746) 96.976 (3.024) 30.39 bicubic 456
tf_efficientnet_b6 *tfp 84.140 (15.860) 96.852 (3.148) 43.04 bicubic 528
tf_efficientnet_b6 84.110 (15.890) 96.886 (3.114) 43.04 bicubic 528
tf_efficientnet_b3_ns *tfp 84.054 (15.946) 96.918 (3.082) 12.23 bicubic 300
tf_efficientnet_b3_ns 84.048 (15.952) 96.910 (3.090) 12.23 bicubic 300
tf_efficientnet_b5 *tfp 83.822 (16.178) 96.756 (3.244) 30.39 bicubic 456
tf_efficientnet_b5 83.812 (16.188) 96.748 (3.252) 30.39 bicubic 456
tf_efficientnet_b4_ap *tfp 83.278 (16.722) 96.376 (3.624) 19.34 bicubic 380
tf_efficientnet_b4_ap 83.248 (16.752) 96.388 (3.612) 19.34 bicubic 380
tf_efficientnet_b4 83.022 (16.978) 96.300 (3.700) 19.34 bicubic 380
tf_efficientnet_b4 *tfp 82.948 (17.052) 96.308 (3.692) 19.34 bicubic 380
tf_efficientnet_b2_ns *tfp 82.436 (17.564) 96.268 (3.732) 9.11 bicubic 260
tf_efficientnet_b2_ns 82.380 (17.620) 96.248 (3.752) 9.11 bicubic 260
tf_efficientnet_b3_ap *tfp 81.882 (18.118) 95.662 (4.338) 12.23 bicubic 300
tf_efficientnet_b3_ap 81.828 (18.172) 95.624 (4.376) 12.23 bicubic 300
tf_efficientnet_b3 81.636 (18.364) 95.718 (4.282) 12.23 bicubic 300
tf_efficientnet_b3 *tfp 81.576 (18.424) 95.662 (4.338) 12.23 bicubic 300
tf_efficientnet_lite4 81.528 (18.472) 95.668 (4.332) 13.00 bilinear 380
tf_efficientnet_b1_ns *tfp 81.514 (18.486) 95.776 (4.224) 7.79 bicubic 240
tf_efficientnet_lite4 *tfp 81.502 (18.498) 95.676 (4.324) 13.00 bilinear 380
tf_efficientnet_b1_ns 81.388 (18.612) 95.738 (4.262) 7.79 bicubic 240
gluon_senet154 81.224 (18.776) 95.356 (4.644) 115.09 bicubic 224
gluon_resnet152_v1s 81.012 (18.988) 95.416 (4.584) 60.32 bicubic 224
gluon_seresnext101_32x4d 80.902 (19.098) 95.294 (4.706) 48.96 bicubic 224
gluon_seresnext101_64x4d 80.890 (19.110) 95.304 (4.696) 88.23 bicubic 224
gluon_resnext101_64x4d 80.602 (19.398) 94.994 (5.006) 83.46 bicubic 224
tf_efficientnet_el 80.534 (19.466) 95.190 (4.810) 10.59 bicubic 300
tf_efficientnet_el *tfp 80.476 (19.524) 95.200 (4.800) 10.59 bicubic 300
gluon_resnet152_v1d 80.470 (19.530) 95.206 (4.794) 60.21 bicubic 224
gluon_resnet101_v1d 80.424 (19.576) 95.020 (4.980) 44.57 bicubic 224
tf_efficientnet_b2_ap *tfp 80.420 (19.580) 95.040 (4.960) 9.11 bicubic 260
gluon_resnext101_32x4d 80.334 (19.666) 94.926 (5.074) 44.18 bicubic 224
tf_efficientnet_b2_ap 80.306 (19.694) 95.028 (4.972) 9.11 bicubic 260
gluon_resnet101_v1s 80.300 (19.700) 95.150 (4.850) 44.67 bicubic 224
tf_efficientnet_b2 *tfp 80.188 (19.812) 94.974 (5.026) 9.11 bicubic 260
tf_efficientnet_b2 80.086 (19.914) 94.908 (5.092) 9.11 bicubic 260
gluon_resnet152_v1c 79.916 (20.084) 94.842 (5.158) 60.21 bicubic 224
gluon_seresnext50_32x4d 79.912 (20.088) 94.818 (5.182) 27.56 bicubic 224
tf_efficientnet_lite3 79.812 (20.188) 94.914 (5.086) 8.20 bilinear 300
tf_efficientnet_lite3 *tfp 79.734 (20.266) 94.838 (5.162) 8.20 bilinear 300
gluon_resnet152_v1b 79.692 (20.308) 94.738 (5.262) 60.19 bicubic 224
gluon_xception65 79.604 (20.396) 94.748 (5.252) 39.92 bicubic 299
gluon_resnet101_v1c 79.544 (20.456) 94.586 (5.414) 44.57 bicubic 224
tf_efficientnet_b1_ap *tfp 79.532 (20.468) 94.378 (5.622) 7.79 bicubic 240
tf_efficientnet_cc_b1_8e *tfp 79.464 (20.536) 94.492 (5.508) 39.7 bicubic 240
gluon_resnext50_32x4d 79.356 (20.644) 94.424 (5.576) 25.03 bicubic 224
gluon_resnet101_v1b 79.304 (20.696) 94.524 (5.476) 44.55 bicubic 224
tf_efficientnet_cc_b1_8e 79.298 (20.702) 94.364 (5.636) 39.7 bicubic 240
tf_efficientnet_b1_ap 79.278 (20.722) 94.308 (5.692) 7.79 bicubic 240
tf_efficientnet_b1 *tfp 79.172 (20.828) 94.450 (5.550) 7.79 bicubic 240
gluon_resnet50_v1d 79.074 (20.926) 94.476 (5.524) 25.58 bicubic 224
tf_efficientnet_em *tfp 78.958 (21.042) 94.458 (5.542) 6.90 bicubic 240
tf_mixnet_l *tfp 78.846 (21.154) 94.212 (5.788) 7.33 bilinear 224
tf_efficientnet_b1 78.826 (21.174) 94.198 (5.802) 7.79 bicubic 240
tf_efficientnet_b0_ns *tfp 78.806 (21.194) 94.496 (5.504) 5.29 bicubic 224
gluon_inception_v3 78.804 (21.196) 94.380 (5.620) 27.16M bicubic 299
tf_mixnet_l 78.770 (21.230) 94.004 (5.996) 7.33 bicubic 224
tf_efficientnet_em 78.742 (21.258) 94.332 (5.668) 6.90 bicubic 240
gluon_resnet50_v1s 78.712 (21.288) 94.242 (5.758) 25.68 bicubic 224
tf_efficientnet_b0_ns 78.658 (21.342) 94.376 (5.624) 5.29 bicubic 224
tf_efficientnet_cc_b0_8e *tfp 78.314 (21.686) 93.790 (6.210) 24.0 bicubic 224
gluon_resnet50_v1c 78.010 (21.990) 93.988 (6.012) 25.58 bicubic 224
tf_efficientnet_cc_b0_8e 77.908 (22.092) 93.656 (6.344) 24.0 bicubic 224
tf_inception_v3 77.856 (22.144) 93.644 (6.356) 27.16M bicubic 299
tf_efficientnet_cc_b0_4e *tfp 77.746 (22.254) 93.552 (6.448) 13.3 bicubic 224
tf_efficientnet_es *tfp 77.616 (22.384) 93.750 (6.250) 5.44 bicubic 224
gluon_resnet50_v1b 77.578 (22.422) 93.718 (6.282) 25.56 bicubic 224
adv_inception_v3 77.576 (22.424) 93.724 (6.276) 27.16M bicubic 299
tf_efficientnet_lite2 *tfp 77.544 (22.456) 93.800 (6.200) 6.09 bilinear 260
tf_efficientnet_lite2 77.460 (22.540) 93.746 (6.254) 6.09 bicubic 260
tf_efficientnet_b0_ap *tfp 77.514 (22.486) 93.576 (6.424) 5.29 bicubic 224
tf_efficientnet_cc_b0_4e 77.304 (22.696) 93.332 (6.668) 13.3 bicubic 224
tf_efficientnet_es 77.264 (22.736) 93.600 (6.400) 5.44 bicubic 224
tf_efficientnet_b0 *tfp 77.258 (22.742) 93.478 (6.522) 5.29 bicubic 224
tf_efficientnet_b0_ap 77.084 (22.916) 93.254 (6.746) 5.29 bicubic 224
tf_mixnet_m *tfp 77.072 (22.928) 93.368 (6.632) 5.01 bilinear 224
tf_mixnet_m 76.950 (23.050) 93.156 (6.844) 5.01 bicubic 224
tf_efficientnet_b0 76.848 (23.152) 93.228 (6.772) 5.29 bicubic 224
tf_efficientnet_lite1 *tfp 76.764 (23.236) 93.326 (6.674) 5.42 bilinear 240
tf_efficientnet_lite1 76.638 (23.362) 93.232 (6.768) 5.42 bicubic 240
tf_mixnet_s *tfp 75.800 (24.200) 92.788 (7.212) 4.13 bilinear 224
tf_mobilenetv3_large_100 *tfp 75.768 (24.232) 92.710 (7.290) 5.48 bilinear 224
tf_mixnet_s 75.648 (24.352) 92.636 (7.364) 4.13 bicubic 224
tf_mobilenetv3_large_100 75.516 (24.484) 92.600 (7.400) 5.48 bilinear 224
tf_efficientnet_lite0 *tfp 75.074 (24.926) 92.314 (7.686) 4.65 bilinear 224
tf_efficientnet_lite0 74.842 (25.158) 92.170 (7.830) 4.65 bicubic 224
gluon_resnet34_v1b 74.580 (25.420) 91.988 (8.012) 21.80 bicubic 224
tf_mobilenetv3_large_075 *tfp 73.730 (26.270) 91.616 (8.384) 3.99 bilinear 224
tf_mobilenetv3_large_075 73.442 (26.558) 91.352 (8.648) 3.99 bilinear 224
tf_mobilenetv3_large_minimal_100 *tfp 72.678 (27.322) 90.860 (9.140) 3.92 bilinear 224
tf_mobilenetv3_large_minimal_100 72.244 (27.756) 90.636 (9.364) 3.92 bilinear 224
tf_mobilenetv3_small_100 *tfp 67.918 (32.082) 87.958 (12.042 2.54 bilinear 224
tf_mobilenetv3_small_100 67.918 (32.082) 87.662 (12.338) 2.54 bilinear 224
tf_mobilenetv3_small_075 *tfp 66.142 (33.858) 86.498 (13.502) 2.04 bilinear 224
tf_mobilenetv3_small_075 65.718 (34.282) 86.136 (13.864) 2.04 bilinear 224
tf_mobilenetv3_small_minimal_100 *tfp 63.378 (36.622) 84.802 (15.198) 2.04 bilinear 224
tf_mobilenetv3_small_minimal_100 62.898 (37.102) 84.230 (15.770) 2.04 bilinear 224