import logging from .constants import * _logger = logging.getLogger(__name__) def resolve_data_config( args, default_cfg=None, model=None, use_test_size=False, verbose=False ): new_config = {} default_cfg = default_cfg or {} if not default_cfg and model is not None and hasattr(model, 'default_cfg'): default_cfg = model.default_cfg # Resolve input/image size in_chans = 3 if args.get('chans', None) is not None: in_chans = args['chans'] input_size = (in_chans, 224, 224) if args.get('input_size', None) is not None: assert isinstance(args['input_size'], (tuple, list)) assert len(args['input_size']) == 3 input_size = tuple(args['input_size']) in_chans = input_size[0] # input_size overrides in_chans elif args.get('img_size', None) is not None: assert isinstance(args['img_size'], int) input_size = (in_chans, args['img_size'], args['img_size']) else: if use_test_size and default_cfg.get('test_input_size', None) is not None: input_size = default_cfg['test_input_size'] elif default_cfg.get('input_size', None) is not None: input_size = default_cfg['input_size'] new_config['input_size'] = input_size # resolve interpolation method new_config['interpolation'] = 'bicubic' if args.get('interpolation', None): new_config['interpolation'] = args['interpolation'] elif default_cfg.get('interpolation', None): new_config['interpolation'] = default_cfg['interpolation'] # resolve dataset + model mean for normalization new_config['mean'] = IMAGENET_DEFAULT_MEAN if args.get('mean', None) is not None: mean = tuple(args['mean']) if len(mean) == 1: mean = tuple(list(mean) * in_chans) else: assert len(mean) == in_chans new_config['mean'] = mean elif default_cfg.get('mean', None): new_config['mean'] = default_cfg['mean'] # resolve dataset + model std deviation for normalization new_config['std'] = IMAGENET_DEFAULT_STD if args.get('std', None) is not None: std = tuple(args['std']) if len(std) == 1: std = tuple(list(std) * in_chans) else: assert len(std) == in_chans new_config['std'] = std elif default_cfg.get('std', None): new_config['std'] = default_cfg['std'] # resolve default inference crop crop_pct = DEFAULT_CROP_PCT if args.get('crop_pct', None): crop_pct = args['crop_pct'] else: if use_test_size and default_cfg.get('test_crop_pct', None): crop_pct = default_cfg['test_crop_pct'] elif default_cfg.get('crop_pct', None): crop_pct = default_cfg['crop_pct'] new_config['crop_pct'] = crop_pct # resolve default crop percentage crop_mode = DEFAULT_CROP_MODE if args.get('crop_mode', None): crop_mode = args['crop_mode'] elif default_cfg.get('crop_mode', None): crop_mode = default_cfg['crop_mode'] new_config['crop_mode'] = crop_mode if verbose: _logger.info('Data processing configuration for current model + dataset:') for n, v in new_config.items(): _logger.info('\t%s: %s' % (n, str(v))) return new_config