"""PyTorch SelecSLS on ImageNet Based on ResNet implementation in this repository SelecSLS (core) Network Architecture as proposed in XNect: Real-time Multi-person 3D Human Pose Estimation with a Single RGB Camera, Mehta et al. https://arxiv.org/abs/1907.00837 Implementation by Dushyant Mehta (@mehtadushy) """ import math import torch import torch.nn as nn import torch.nn.functional as F from .registry import register_model from .helpers import load_pretrained from .adaptive_avgmax_pool import SelectAdaptivePool2d from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD __all__ = ['SelecSLS'] # model_registry will add each entrypoint fn to this def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (3, 3), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem', 'classifier': 'fc', **kwargs } default_cfgs = { 'selecsls42': _cfg( url='', interpolation='bicubic'), 'selecsls60': _cfg( url='', interpolation='bicubic'), 'selecsls60NH': _cfg( url='', interpolation='bicubic'), 'selecsls84': _cfg( url='', interpolation='bicubic'), } def conv_bn(inp, oup, stride): return nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), nn.ReLU(inplace=True) ) def conv_1x1_bn(inp, oup): return nn.Sequential( nn.Conv2d(inp, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), nn.ReLU(inplace=True) ) class SelecSLSBlock(nn.Module): def __init__(self, inp, skip, k, oup, isFirst, stride): super(SelecSLSBlock, self).__init__() self.stride = stride self.isFirst = isFirst assert stride in [1, 2] #Process input with 4 conv blocks with the same number of input and output channels self.conv1 = nn.Sequential( nn.Conv2d(inp, k, 3, stride, 1,groups= 1, bias=False, dilation=1), nn.BatchNorm2d(k), nn.ReLU(inplace=True) ) self.conv2 = nn.Sequential( nn.Conv2d(k, k, 1, 1, 0,groups= 1, bias=False, dilation=1), nn.BatchNorm2d(k), nn.ReLU(inplace=True) ) self.conv3 = nn.Sequential( nn.Conv2d(k, k//2, 3, 1, 1,groups= 1, bias=False, dilation=1), nn.BatchNorm2d(k//2), nn.ReLU(inplace=True) ) self.conv4 = nn.Sequential( nn.Conv2d(k//2, k, 1, 1, 0,groups= 1, bias=False, dilation=1), nn.BatchNorm2d(k), nn.ReLU(inplace=True) ) self.conv5 = nn.Sequential( nn.Conv2d(k, k//2, 3, 1, 1,groups= 1, bias=False, dilation=1), nn.BatchNorm2d(k//2), nn.ReLU(inplace=True) ) self.conv6 = nn.Sequential( nn.Conv2d(2*k + (0 if isFirst else skip), oup, 1, 1, 0,groups= 1, bias=False, dilation=1), nn.BatchNorm2d(oup), nn.ReLU(inplace=True) ) def forward(self, x): assert isinstance(x,list) assert len(x) in [1,2] d1 = self.conv1(x[0]) d2 = self.conv3(self.conv2(d1)) d3 = self.conv5(self.conv4(d2)) if self.isFirst: out = self.conv6(torch.cat([d1, d2, d3], 1)) return [out, out] else: return [self.conv6(torch.cat([d1, d2, d3, x[1]], 1)) , x[1]] class SelecSLS(nn.Module): """SelecSLS42 / SelecSLS60 / SelecSLS84 Parameters ---------- cfg : network config String indicating the network config num_classes : int, default 1000 Number of classification classes. in_chans : int, default 3 Number of input (color) channels. drop_rate : float, default 0. Dropout probability before classifier, for training global_pool : str, default 'avg' Global pooling type. One of 'avg', 'max', 'avgmax', 'catavgmax' """ def __init__(self, cfg='selecsls60', num_classes=1000, in_chans=3, drop_rate=0.0, global_pool='avg'): self.num_classes = num_classes self.drop_rate = drop_rate super(SelecSLS, self).__init__() self.stem = conv_bn(in_chans, 32, 2) #Core Network self.features = [] if cfg=='selecsls42': self.block = SelecSLSBlock #Define configuration of the network after the initial neck self.selecSLS_config = [ #inp,skip, k, oup, isFirst, stride [ 32, 0, 64, 64, True, 2], [ 64, 64, 64, 128, False, 1], [128, 0, 144, 144, True, 2], [144, 144, 144, 288, False, 1], [288, 0, 304, 304, True, 2], [304, 304, 304, 480, False, 1], ] #Head can be replaced with alternative configurations depending on the problem self.head = nn.Sequential( conv_bn(480, 960, 2), conv_bn(960, 1024, 1), conv_bn(1024, 1024, 2), conv_1x1_bn(1024, 1280), ) self.num_features = 1280 elif cfg=='selecsls42NH': self.block = SelecSLSBlock #Define configuration of the network after the initial neck self.selecSLS_config = [ #inp,skip, k, oup, isFirst, stride [ 32, 0, 64, 64, True, 2], [ 64, 64, 64, 128, False, 1], [128, 0, 144, 144, True, 2], [144, 144, 144, 288, False, 1], [288, 0, 304, 304, True, 2], [304, 304, 304, 480, False, 1], ] #Head can be replaced with alternative configurations depending on the problem self.head = nn.Sequential( conv_bn(480, 960, 2), conv_bn(960, 1024, 1), conv_bn(1024, 1280, 2), conv_1x1_bn(1280, 1024), ) self.num_features = 1024 elif cfg=='selecsls60': self.block = SelecSLSBlock #Define configuration of the network after the initial neck self.selecSLS_config = [ #inp,skip, k, oup, isFirst, stride [ 32, 0, 64, 64, True, 2], [ 64, 64, 64, 128, False, 1], [128, 0, 128, 128, True, 2], [128, 128, 128, 128, False, 1], [128, 128, 128, 288, False, 1], [288, 0, 288, 288, True, 2], [288, 288, 288, 288, False, 1], [288, 288, 288, 288, False, 1], [288, 288, 288, 416, False, 1], ] #Head can be replaced with alternative configurations depending on the problem self.head = nn.Sequential( conv_bn(416, 756, 2), conv_bn(756, 1024, 1), conv_bn(1024, 1024, 2), conv_1x1_bn(1024, 1280), ) self.num_features = 1280 elif cfg=='selecsls60NH': self.block = SelecSLSBlock #Define configuration of the network after the initial neck self.selecSLS_config = [ #inp,skip, k, oup, isFirst, stride [ 32, 0, 64, 64, True, 2], [ 64, 64, 64, 128, False, 1], [128, 0, 128, 128, True, 2], [128, 128, 128, 128, False, 1], [128, 128, 128, 288, False, 1], [288, 0, 288, 288, True, 2], [288, 288, 288, 288, False, 1], [288, 288, 288, 288, False, 1], [288, 288, 288, 416, False, 1], ] #Head can be replaced with alternative configurations depending on the problem self.head = nn.Sequential( conv_bn(416, 756, 2), conv_bn(756, 1024, 1), conv_bn(1024, 1280, 2), conv_1x1_bn(1280, 1024), ) self.num_features = 1024 elif cfg=='selecsls84': self.block = SelecSLSBlock #Define configuration of the network after the initial neck self.selecSLS_config = [ #inp,skip, k, oup, isFirst, stride [ 32, 0, 64, 64, True, 2], [ 64, 64, 64, 144, False, 1], [144, 0, 144, 144, True, 2], [144, 144, 144, 144, False, 1], [144, 144, 144, 144, False, 1], [144, 144, 144, 144, False, 1], [144, 144, 144, 304, False, 1], [304, 0, 304, 304, True, 2], [304, 304, 304, 304, False, 1], [304, 304, 304, 304, False, 1], [304, 304, 304, 304, False, 1], [304, 304, 304, 304, False, 1], [304, 304, 304, 512, False, 1], ] #Head can be replaced with alternative configurations depending on the problem self.head = nn.Sequential( conv_bn(512, 960, 2), conv_bn(960, 1024, 1), conv_bn(1024, 1024, 2), conv_1x1_bn(1024, 1280), ) self.num_features = 1280 else: raise ValueError('Invalid net configuration '+cfg+' !!!') for inp, skip, k, oup, isFirst, stride in self.selecSLS_config: self.features.append(self.block(inp, skip, k, oup, isFirst, stride)) self.features = nn.Sequential(*self.features) self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes) for n, m in self.named_modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1.) nn.init.constant_(m.bias, 0.) def get_classifier(self): return self.fc def reset_classifier(self, num_classes, global_pool='avg'): self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.num_classes = num_classes del self.fc if num_classes: self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes) else: self.fc = None def forward_features(self, x, pool=True): x = self.stem(x) x = self.features([x]) x = self.head(x[0]) if pool: x = self.global_pool(x) x = x.view(x.size(0), -1) return x def forward(self, x): x = self.forward_features(x) if self.drop_rate > 0.: x = F.dropout(x, p=self.drop_rate, training=self.training) x = self.fc(x) return x @register_model def selecsls42(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a SelecSLS42 model. """ default_cfg = default_cfgs['selecsls42'] model = SelecSLS( cfg='selecsls42', num_classes=1000, in_chans=3, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def selecsls42NH(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a SelecSLS42NH model. """ default_cfg = default_cfgs['selecsls42NH'] model = SelecSLS( cfg='selecsls42NH', num_classes=1000, in_chans=3,**kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def selecsls60(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a SelecSLS60 model. """ default_cfg = default_cfgs['selecsls60'] model = SelecSLS( cfg='selecsls60', num_classes=1000, in_chans=3,**kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def selecsls60NH(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a SelecSLS60NH model. """ default_cfg = default_cfgs['selecsls60NH'] model = SelecSLS( cfg='selecsls60NH', num_classes=1000, in_chans=3,**kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def selecsls84(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a SelecSLS84 model. """ default_cfg = default_cfgs['selecsls84'] model = SelecSLS( cfg='selecsls84', num_classes=1000, in_chans=3, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model