""" MobileViT Paper: `MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer` - https://arxiv.org/abs/2110.02178 MobileVitBlock and checkpoints adapted from https://github.com/apple/ml-cvnets (original copyright below) License: https://github.com/apple/ml-cvnets/blob/main/LICENSE (Apple open source) Rest of code, ByobNet, and Transformer block hacked together by / Copyright 2022, Ross Wightman """ # # For licensing see accompanying LICENSE file. # Copyright (C) 2020 Apple Inc. All Rights Reserved. # import math from typing import Union, Callable, Dict, Tuple, Optional import torch from torch import nn import torch.nn.functional as F from .byobnet import register_block, ByoBlockCfg, ByoModelCfg, ByobNet, LayerFn, num_groups from .layers import to_2tuple, make_divisible from .vision_transformer import Block as TransformerBlock from .helpers import build_model_with_cfg from .registry import register_model __all__ = [] def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), 'crop_pct': 0.9, 'interpolation': 'bicubic', 'mean': (0, 0, 0), 'std': (1, 1, 1), 'first_conv': 'stem.conv', 'classifier': 'head.fc', 'fixed_input_size': False, **kwargs } default_cfgs = { 'mobilevit_xxs': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevit_xxs-ad385b40.pth'), 'mobilevit_xs': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevit_xs-8fbd6366.pth'), 'mobilevit_s': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevit_s-38a5a959.pth'), 'semobilevit_s': _cfg(), } def _inverted_residual_block(d, c, s, br=4.0): # inverted residual is a bottleneck block with bottle_ratio > 1 applied to in_chs, linear output, gs=1 (depthwise) return ByoBlockCfg( type='bottle', d=d, c=c, s=s, gs=1, br=br, block_kwargs=dict(bottle_in=True, linear_out=True)) def _mobilevit_block(d, c, s, transformer_dim, transformer_depth, patch_size=4, br=4.0): # inverted residual + mobilevit blocks as per MobileViT network return ( _inverted_residual_block(d=d, c=c, s=s, br=br), ByoBlockCfg( type='mobilevit', d=1, c=c, s=1, block_kwargs=dict( transformer_dim=transformer_dim, transformer_depth=transformer_depth, patch_size=patch_size) ) ) model_cfgs = dict( mobilevit_xxs=ByoModelCfg( blocks=( _inverted_residual_block(d=1, c=16, s=1, br=2.0), _inverted_residual_block(d=3, c=24, s=2, br=2.0), _mobilevit_block(d=1, c=48, s=2, transformer_dim=64, transformer_depth=2, patch_size=2, br=2.0), _mobilevit_block(d=1, c=64, s=2, transformer_dim=80, transformer_depth=4, patch_size=2, br=2.0), _mobilevit_block(d=1, c=80, s=2, transformer_dim=96, transformer_depth=3, patch_size=2, br=2.0), ), stem_chs=16, stem_type='3x3', stem_pool='', downsample='', act_layer='silu', num_features=320, ), mobilevit_xs=ByoModelCfg( blocks=( _inverted_residual_block(d=1, c=32, s=1), _inverted_residual_block(d=3, c=48, s=2), _mobilevit_block(d=1, c=64, s=2, transformer_dim=96, transformer_depth=2, patch_size=2), _mobilevit_block(d=1, c=80, s=2, transformer_dim=120, transformer_depth=4, patch_size=2), _mobilevit_block(d=1, c=96, s=2, transformer_dim=144, transformer_depth=3, patch_size=2), ), stem_chs=16, stem_type='3x3', stem_pool='', downsample='', act_layer='silu', num_features=384, ), mobilevit_s=ByoModelCfg( blocks=( _inverted_residual_block(d=1, c=32, s=1), _inverted_residual_block(d=3, c=64, s=2), _mobilevit_block(d=1, c=96, s=2, transformer_dim=144, transformer_depth=2, patch_size=2), _mobilevit_block(d=1, c=128, s=2, transformer_dim=192, transformer_depth=4, patch_size=2), _mobilevit_block(d=1, c=160, s=2, transformer_dim=240, transformer_depth=3, patch_size=2), ), stem_chs=16, stem_type='3x3', stem_pool='', downsample='', act_layer='silu', num_features=640, ), semobilevit_s=ByoModelCfg( blocks=( _inverted_residual_block(d=1, c=32, s=1), _inverted_residual_block(d=3, c=64, s=2), _mobilevit_block(d=1, c=96, s=2, transformer_dim=144, transformer_depth=2, patch_size=2), _mobilevit_block(d=1, c=128, s=2, transformer_dim=192, transformer_depth=4, patch_size=2), _mobilevit_block(d=1, c=160, s=2, transformer_dim=240, transformer_depth=3, patch_size=2), ), stem_chs=16, stem_type='3x3', stem_pool='', downsample='', attn_layer='se', attn_kwargs=dict(rd_ratio=1/8), num_features=640, ), ) class MobileViTBlock(nn.Module): """ MobileViT block Paper: https://arxiv.org/abs/2110.02178?context=cs.LG """ def __init__( self, in_chs: int, out_chs: Optional[int] = None, kernel_size: int = 3, stride: int = 1, bottle_ratio: float = 1.0, group_size: Optional[int] = None, dilation: Tuple[int, int] = (1, 1), mlp_ratio: float = 2.0, transformer_dim: Optional[int] = None, transformer_depth: int = 2, patch_size: int = 8, num_heads: int = 4, attn_drop: float = 0., drop: int = 0., no_fusion: bool = False, drop_path_rate: float = 0., layers: LayerFn = None, transformer_norm_layer: Callable = nn.LayerNorm, downsample: str = '' ): super(MobileViTBlock, self).__init__() layers = layers or LayerFn() groups = num_groups(group_size, in_chs) out_chs = out_chs or in_chs transformer_dim = transformer_dim or make_divisible(bottle_ratio * in_chs) self.conv_kxk = layers.conv_norm_act( in_chs, in_chs, kernel_size=kernel_size, stride=stride, groups=groups, dilation=dilation[0]) self.conv_1x1 = nn.Conv2d(in_chs, transformer_dim, kernel_size=1, bias=False) self.transformer = nn.Sequential(*[ TransformerBlock( transformer_dim, mlp_ratio=mlp_ratio, num_heads=num_heads, qkv_bias=True, attn_drop=attn_drop, drop=drop, drop_path=drop_path_rate, act_layer=layers.act, norm_layer=transformer_norm_layer) for _ in range(transformer_depth) ]) self.norm = transformer_norm_layer(transformer_dim) self.conv_proj = layers.conv_norm_act(transformer_dim, out_chs, kernel_size=1, stride=1) if no_fusion: self.conv_fusion = None else: self.conv_fusion = layers.conv_norm_act(in_chs + out_chs, out_chs, kernel_size=kernel_size, stride=1) self.patch_size = to_2tuple(patch_size) self.patch_area = self.patch_size[0] * self.patch_size[1] def forward(self, x: torch.Tensor) -> torch.Tensor: shortcut = x # Local representation x = self.conv_kxk(x) x = self.conv_1x1(x) # Unfold (feature map -> patches) patch_h, patch_w = self.patch_size B, C, H, W = x.shape new_h, new_w = int(math.ceil(H / patch_h) * patch_h), int(math.ceil(W / patch_w) * patch_w) num_patch_h, num_patch_w = new_h // patch_h, new_w // patch_w # n_h, n_w num_patches = num_patch_h * num_patch_w # N interpolate = False if new_h != H or new_w != W: # Note: Padding can be done, but then it needs to be handled in attention function. x = F.interpolate(x, size=(new_h, new_w), mode="bilinear", align_corners=False) interpolate = True # [B, C, H, W] --> [B * C * n_h, n_w, p_h, p_w] x = x.reshape(B * C * num_patch_h, patch_h, num_patch_w, patch_w).transpose(1, 2) # [B * C * n_h, n_w, p_h, p_w] --> [BP, N, C] where P = p_h * p_w and N = n_h * n_w x = x.reshape(B, C, num_patches, self.patch_area).transpose(1, 3).reshape(B * self.patch_area, num_patches, -1) # Global representations x = self.transformer(x) x = self.norm(x) # Fold (patch -> feature map) # [B, P, N, C] --> [B*C*n_h, n_w, p_h, p_w] x = x.contiguous().view(B, self.patch_area, num_patches, -1) x = x.transpose(1, 3).reshape(B * C * num_patch_h, num_patch_w, patch_h, patch_w) # [B*C*n_h, n_w, p_h, p_w] --> [B*C*n_h, p_h, n_w, p_w] --> [B, C, H, W] x = x.transpose(1, 2).reshape(B, C, num_patch_h * patch_h, num_patch_w * patch_w) if interpolate: x = F.interpolate(x, size=(H, W), mode="bilinear", align_corners=False) x = self.conv_proj(x) if self.conv_fusion is not None: x = self.conv_fusion(torch.cat((shortcut, x), dim=1)) return x register_block('mobilevit', MobileViTBlock) def _create_mobilevit(variant, cfg_variant=None, pretrained=False, **kwargs): return build_model_with_cfg( ByobNet, variant, pretrained, model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant], feature_cfg=dict(flatten_sequential=True), **kwargs) @register_model def mobilevit_xxs(pretrained=False, **kwargs): return _create_mobilevit('mobilevit_xxs', pretrained=pretrained, **kwargs) @register_model def mobilevit_xs(pretrained=False, **kwargs): return _create_mobilevit('mobilevit_xs', pretrained=pretrained, **kwargs) @register_model def mobilevit_s(pretrained=False, **kwargs): return _create_mobilevit('mobilevit_s', pretrained=pretrained, **kwargs) @register_model def semobilevit_s(pretrained=False, **kwargs): return _create_mobilevit('semobilevit_s', pretrained=pretrained, **kwargs)