""" Normalization + Activation Layers """ from typing import Union, List import torch from torch import nn as nn from torch.nn import functional as F from .create_act import get_act_layer class BatchNormAct2d(nn.BatchNorm2d): """BatchNorm + Activation This module performs BatchNorm + Activation in a manner that will remain backwards compatible with weights trained with separate bn, act. This is why we inherit from BN instead of composing it as a .bn member. """ def __init__( self, num_features, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True, apply_act=True, act_layer=nn.ReLU, inplace=True, drop_layer=None): super(BatchNormAct2d, self).__init__( num_features, eps=eps, momentum=momentum, affine=affine, track_running_stats=track_running_stats) self.drop = drop_layer() if drop_layer is not None else nn.Identity() act_layer = get_act_layer(act_layer) # string -> nn.Module if act_layer is not None and apply_act: act_args = dict(inplace=True) if inplace else {} self.act = act_layer(**act_args) else: self.act = nn.Identity() def _forward_jit(self, x): """ A cut & paste of the contents of the PyTorch BatchNorm2d forward function """ # exponential_average_factor is set to self.momentum # (when it is available) only so that it gets updated # in ONNX graph when this node is exported to ONNX. if self.momentum is None: exponential_average_factor = 0.0 else: exponential_average_factor = self.momentum if self.training and self.track_running_stats: # TODO: if statement only here to tell the jit to skip emitting this when it is None if self.num_batches_tracked is not None: # type: ignore[has-type] self.num_batches_tracked = self.num_batches_tracked + 1 # type: ignore[has-type] if self.momentum is None: # use cumulative moving average exponential_average_factor = 1.0 / float(self.num_batches_tracked) else: # use exponential moving average exponential_average_factor = self.momentum r""" Decide whether the mini-batch stats should be used for normalization rather than the buffers. Mini-batch stats are used in training mode, and in eval mode when buffers are None. """ if self.training: bn_training = True else: bn_training = (self.running_mean is None) and (self.running_var is None) r""" Buffers are only updated if they are to be tracked and we are in training mode. Thus they only need to be passed when the update should occur (i.e. in training mode when they are tracked), or when buffer stats are used for normalization (i.e. in eval mode when buffers are not None). """ return F.batch_norm( x, # If buffers are not to be tracked, ensure that they won't be updated self.running_mean if not self.training or self.track_running_stats else None, self.running_var if not self.training or self.track_running_stats else None, self.weight, self.bias, bn_training, exponential_average_factor, self.eps, ) @torch.jit.ignore def _forward_python(self, x): return super(BatchNormAct2d, self).forward(x) def forward(self, x): # FIXME cannot call parent forward() and maintain jit.script compatibility? if torch.jit.is_scripting(): x = self._forward_jit(x) else: x = self._forward_python(x) x = self.drop(x) x = self.act(x) return x def _num_groups(num_channels, num_groups, group_size): if group_size: assert num_channels % group_size == 0 return num_channels // group_size return num_groups class GroupNormAct(nn.GroupNorm): # NOTE num_channel and num_groups order flipped for easier layer swaps / binding of fixed args def __init__( self, num_channels, num_groups=32, eps=1e-5, affine=True, group_size=None, apply_act=True, act_layer=nn.ReLU, inplace=True, drop_layer=None): super(GroupNormAct, self).__init__( _num_groups(num_channels, num_groups, group_size), num_channels, eps=eps, affine=affine) self.drop = drop_layer() if drop_layer is not None else nn.Identity() act_layer = get_act_layer(act_layer) # string -> nn.Module if act_layer is not None and apply_act: act_args = dict(inplace=True) if inplace else {} self.act = act_layer(**act_args) else: self.act = nn.Identity() def forward(self, x): x = F.group_norm(x, self.num_groups, self.weight, self.bias, self.eps) x = self.drop(x) x = self.act(x) return x class LayerNormAct(nn.LayerNorm): def __init__( self, normalization_shape: Union[int, List[int], torch.Size], eps=1e-5, affine=True, apply_act=True, act_layer=nn.ReLU, inplace=True, drop_layer=None): super(LayerNormAct, self).__init__(normalization_shape, eps=eps, elementwise_affine=affine) self.drop = drop_layer() if drop_layer is not None else nn.Identity() act_layer = get_act_layer(act_layer) # string -> nn.Module if act_layer is not None and apply_act: act_args = dict(inplace=True) if inplace else {} self.act = act_layer(**act_args) else: self.act = nn.Identity() def forward(self, x): x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) x = self.drop(x) x = self.act(x) return x class LayerNormAct2d(nn.LayerNorm): def __init__( self, num_channels, eps=1e-5, affine=True, apply_act=True, act_layer=nn.ReLU, inplace=True, drop_layer=None): super(LayerNormAct2d, self).__init__(num_channels, eps=eps, elementwise_affine=affine) self.drop = drop_layer() if drop_layer is not None else nn.Identity() act_layer = get_act_layer(act_layer) # string -> nn.Module if act_layer is not None and apply_act: act_args = dict(inplace=True) if inplace else {} self.act = act_layer(**act_args) else: self.act = nn.Identity() def forward(self, x): x = F.layer_norm( x.permute(0, 2, 3, 1), self.normalized_shape, self.weight, self.bias, self.eps).permute(0, 3, 1, 2) x = self.drop(x) x = self.act(x) return x