"""RegNet Paper: `Designing Network Design Spaces` - https://arxiv.org/abs/2003.13678 Original Impl: https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py Based on original PyTorch impl linked above, but re-wrote to use my own blocks (adapted from ResNet here) and cleaned up with more descriptive variable names. Weights from original impl have been modified * first layer from BGR -> RGB as most PyTorch models are * removed training specific dict entries from checkpoints and keep model state_dict only * remap names to match the ones here Hacked together by / Copyright 2020 Ross Wightman """ import numpy as np import torch.nn as nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from .helpers import build_model_with_cfg from .layers import ClassifierHead, AvgPool2dSame, ConvBnAct, SEModule, DropPath from .registry import register_model def _mcfg(**kwargs): cfg = dict(se_ratio=0., bottle_ratio=1., stem_width=32) cfg.update(**kwargs) return cfg # Model FLOPS = three trailing digits * 10^8 model_cfgs = dict( regnetx_002=_mcfg(w0=24, wa=36.44, wm=2.49, group_w=8, depth=13), regnetx_004=_mcfg(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22), regnetx_006=_mcfg(w0=48, wa=36.97, wm=2.24, group_w=24, depth=16), regnetx_008=_mcfg(w0=56, wa=35.73, wm=2.28, group_w=16, depth=16), regnetx_016=_mcfg(w0=80, wa=34.01, wm=2.25, group_w=24, depth=18), regnetx_032=_mcfg(w0=88, wa=26.31, wm=2.25, group_w=48, depth=25), regnetx_040=_mcfg(w0=96, wa=38.65, wm=2.43, group_w=40, depth=23), regnetx_064=_mcfg(w0=184, wa=60.83, wm=2.07, group_w=56, depth=17), regnetx_080=_mcfg(w0=80, wa=49.56, wm=2.88, group_w=120, depth=23), regnetx_120=_mcfg(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19), regnetx_160=_mcfg(w0=216, wa=55.59, wm=2.1, group_w=128, depth=22), regnetx_320=_mcfg(w0=320, wa=69.86, wm=2.0, group_w=168, depth=23), regnety_002=_mcfg(w0=24, wa=36.44, wm=2.49, group_w=8, depth=13, se_ratio=0.25), regnety_004=_mcfg(w0=48, wa=27.89, wm=2.09, group_w=8, depth=16, se_ratio=0.25), regnety_006=_mcfg(w0=48, wa=32.54, wm=2.32, group_w=16, depth=15, se_ratio=0.25), regnety_008=_mcfg(w0=56, wa=38.84, wm=2.4, group_w=16, depth=14, se_ratio=0.25), regnety_016=_mcfg(w0=48, wa=20.71, wm=2.65, group_w=24, depth=27, se_ratio=0.25), regnety_032=_mcfg(w0=80, wa=42.63, wm=2.66, group_w=24, depth=21, se_ratio=0.25), regnety_040=_mcfg(w0=96, wa=31.41, wm=2.24, group_w=64, depth=22, se_ratio=0.25), regnety_064=_mcfg(w0=112, wa=33.22, wm=2.27, group_w=72, depth=25, se_ratio=0.25), regnety_080=_mcfg(w0=192, wa=76.82, wm=2.19, group_w=56, depth=17, se_ratio=0.25), regnety_120=_mcfg(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19, se_ratio=0.25), regnety_160=_mcfg(w0=200, wa=106.23, wm=2.48, group_w=112, depth=18, se_ratio=0.25), regnety_320=_mcfg(w0=232, wa=115.89, wm=2.53, group_w=232, depth=20, se_ratio=0.25), ) def _cfg(url=''): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv', 'classifier': 'head.fc', } default_cfgs = dict( regnetx_002=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_002-e7e85e5c.pth'), regnetx_004=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_004-7d0e9424.pth'), regnetx_006=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_006-85ec1baa.pth'), regnetx_008=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_008-d8b470eb.pth'), regnetx_016=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_016-65ca972a.pth'), regnetx_032=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_032-ed0c7f7e.pth'), regnetx_040=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_040-73c2a654.pth'), regnetx_064=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_064-29278baa.pth'), regnetx_080=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_080-7c7fcab1.pth'), regnetx_120=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_120-65d5521e.pth'), regnetx_160=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_160-c98c4112.pth'), regnetx_320=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_320-8ea38b93.pth'), regnety_002=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_002-e68ca334.pth'), regnety_004=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_004-0db870e6.pth'), regnety_006=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_006-c67e57ec.pth'), regnety_008=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_008-dc900dbe.pth'), regnety_016=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_016-54367f74.pth'), regnety_032=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/regnety_032_ra-7f2439f9.pth'), regnety_040=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_040-f0d569f9.pth'), regnety_064=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_064-0a48325c.pth'), regnety_080=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_080-e7f3eb93.pth'), regnety_120=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_120-721ba79a.pth'), regnety_160=_cfg(url='https://dl.fbaipublicfiles.com/deit/regnety_160-a5fe301d.pth'), regnety_320=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_320-ba464b29.pth'), ) def quantize_float(f, q): """Converts a float to closest non-zero int divisible by q.""" return int(round(f / q) * q) def adjust_widths_groups_comp(widths, bottle_ratios, groups): """Adjusts the compatibility of widths and groups.""" bottleneck_widths = [int(w * b) for w, b in zip(widths, bottle_ratios)] groups = [min(g, w_bot) for g, w_bot in zip(groups, bottleneck_widths)] bottleneck_widths = [quantize_float(w_bot, g) for w_bot, g in zip(bottleneck_widths, groups)] widths = [int(w_bot / b) for w_bot, b in zip(bottleneck_widths, bottle_ratios)] return widths, groups def generate_regnet(width_slope, width_initial, width_mult, depth, q=8): """Generates per block widths from RegNet parameters.""" assert width_slope >= 0 and width_initial > 0 and width_mult > 1 and width_initial % q == 0 widths_cont = np.arange(depth) * width_slope + width_initial width_exps = np.round(np.log(widths_cont / width_initial) / np.log(width_mult)) widths = width_initial * np.power(width_mult, width_exps) widths = np.round(np.divide(widths, q)) * q num_stages, max_stage = len(np.unique(widths)), width_exps.max() + 1 widths, widths_cont = widths.astype(int).tolist(), widths_cont.tolist() return widths, num_stages, max_stage, widths_cont class Bottleneck(nn.Module): """ RegNet Bottleneck This is almost exactly the same as a ResNet Bottlneck. The main difference is the SE block is moved from after conv3 to after conv2. Otherwise, it's just redefining the arguments for groups/bottleneck channels. """ def __init__(self, in_chs, out_chs, stride=1, dilation=1, bottleneck_ratio=1, group_width=1, se_ratio=0.25, downsample=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, aa_layer=None, drop_block=None, drop_path=None): super(Bottleneck, self).__init__() bottleneck_chs = int(round(out_chs * bottleneck_ratio)) groups = bottleneck_chs // group_width cargs = dict(act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, drop_block=drop_block) self.conv1 = ConvBnAct(in_chs, bottleneck_chs, kernel_size=1, **cargs) self.conv2 = ConvBnAct( bottleneck_chs, bottleneck_chs, kernel_size=3, stride=stride, dilation=dilation, groups=groups, **cargs) if se_ratio: se_channels = int(round(in_chs * se_ratio)) self.se = SEModule(bottleneck_chs, reduction_channels=se_channels) else: self.se = None cargs['act_layer'] = None self.conv3 = ConvBnAct(bottleneck_chs, out_chs, kernel_size=1, **cargs) self.act3 = act_layer(inplace=True) self.downsample = downsample self.drop_path = drop_path def zero_init_last_bn(self): nn.init.zeros_(self.conv3.bn.weight) def forward(self, x): shortcut = x x = self.conv1(x) x = self.conv2(x) if self.se is not None: x = self.se(x) x = self.conv3(x) if self.drop_path is not None: x = self.drop_path(x) if self.downsample is not None: shortcut = self.downsample(shortcut) x += shortcut x = self.act3(x) return x def downsample_conv( in_chs, out_chs, kernel_size, stride=1, dilation=1, norm_layer=None): norm_layer = norm_layer or nn.BatchNorm2d kernel_size = 1 if stride == 1 and dilation == 1 else kernel_size dilation = dilation if kernel_size > 1 else 1 return ConvBnAct( in_chs, out_chs, kernel_size, stride=stride, dilation=dilation, norm_layer=norm_layer, act_layer=None) def downsample_avg( in_chs, out_chs, kernel_size, stride=1, dilation=1, norm_layer=None): """ AvgPool Downsampling as in 'D' ResNet variants. This is not in RegNet space but I might experiment.""" norm_layer = norm_layer or nn.BatchNorm2d avg_stride = stride if dilation == 1 else 1 pool = nn.Identity() if stride > 1 or dilation > 1: avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) return nn.Sequential(*[ pool, ConvBnAct(in_chs, out_chs, 1, stride=1, norm_layer=norm_layer, act_layer=None)]) class RegStage(nn.Module): """Stage (sequence of blocks w/ the same output shape).""" def __init__(self, in_chs, out_chs, stride, dilation, depth, bottle_ratio, group_width, block_fn=Bottleneck, se_ratio=0., drop_path_rates=None, drop_block=None): super(RegStage, self).__init__() block_kwargs = {} # FIXME setup to pass various aa, norm, act layer common args first_dilation = 1 if dilation in (1, 2) else 2 for i in range(depth): block_stride = stride if i == 0 else 1 block_in_chs = in_chs if i == 0 else out_chs block_dilation = first_dilation if i == 0 else dilation if drop_path_rates is not None and drop_path_rates[i] > 0.: drop_path = DropPath(drop_path_rates[i]) else: drop_path = None if (block_in_chs != out_chs) or (block_stride != 1): proj_block = downsample_conv(block_in_chs, out_chs, 1, block_stride, block_dilation) else: proj_block = None name = "b{}".format(i + 1) self.add_module( name, block_fn( block_in_chs, out_chs, block_stride, block_dilation, bottle_ratio, group_width, se_ratio, downsample=proj_block, drop_block=drop_block, drop_path=drop_path, **block_kwargs) ) def forward(self, x): for block in self.children(): x = block(x) return x class RegNet(nn.Module): """RegNet model. Paper: https://arxiv.org/abs/2003.13678 Original Impl: https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py """ def __init__(self, cfg, in_chans=3, num_classes=1000, output_stride=32, global_pool='avg', drop_rate=0., drop_path_rate=0., zero_init_last_bn=True): super().__init__() # TODO add drop block, drop path, anti-aliasing, custom bn/act args self.num_classes = num_classes self.drop_rate = drop_rate assert output_stride in (8, 16, 32) # Construct the stem stem_width = cfg['stem_width'] self.stem = ConvBnAct(in_chans, stem_width, 3, stride=2) self.feature_info = [dict(num_chs=stem_width, reduction=2, module='stem')] # Construct the stages prev_width = stem_width curr_stride = 2 stage_params = self._get_stage_params(cfg, output_stride=output_stride, drop_path_rate=drop_path_rate) se_ratio = cfg['se_ratio'] for i, stage_args in enumerate(stage_params): stage_name = "s{}".format(i + 1) self.add_module(stage_name, RegStage(prev_width, **stage_args, se_ratio=se_ratio)) prev_width = stage_args['out_chs'] curr_stride *= stage_args['stride'] self.feature_info += [dict(num_chs=prev_width, reduction=curr_stride, module=stage_name)] # Construct the head self.num_features = prev_width self.head = ClassifierHead( in_chs=prev_width, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, mean=0.0, std=0.01) nn.init.zeros_(m.bias) if zero_init_last_bn: for m in self.modules(): if hasattr(m, 'zero_init_last_bn'): m.zero_init_last_bn() def _get_stage_params(self, cfg, default_stride=2, output_stride=32, drop_path_rate=0.): # Generate RegNet ws per block w_a, w_0, w_m, d = cfg['wa'], cfg['w0'], cfg['wm'], cfg['depth'] widths, num_stages, _, _ = generate_regnet(w_a, w_0, w_m, d) # Convert to per stage format stage_widths, stage_depths = np.unique(widths, return_counts=True) # Use the same group width, bottleneck mult and stride for each stage stage_groups = [cfg['group_w'] for _ in range(num_stages)] stage_bottle_ratios = [cfg['bottle_ratio'] for _ in range(num_stages)] stage_strides = [] stage_dilations = [] net_stride = 2 dilation = 1 for _ in range(num_stages): if net_stride >= output_stride: dilation *= default_stride stride = 1 else: stride = default_stride net_stride *= stride stage_strides.append(stride) stage_dilations.append(dilation) stage_dpr = np.split(np.linspace(0, drop_path_rate, d), np.cumsum(stage_depths[:-1])) # Adjust the compatibility of ws and gws stage_widths, stage_groups = adjust_widths_groups_comp(stage_widths, stage_bottle_ratios, stage_groups) param_names = ['out_chs', 'stride', 'dilation', 'depth', 'bottle_ratio', 'group_width', 'drop_path_rates'] stage_params = [ dict(zip(param_names, params)) for params in zip(stage_widths, stage_strides, stage_dilations, stage_depths, stage_bottle_ratios, stage_groups, stage_dpr)] return stage_params def get_classifier(self): return self.head.fc def reset_classifier(self, num_classes, global_pool='avg'): self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) def forward_features(self, x): for block in list(self.children())[:-1]: x = block(x) return x def forward(self, x): for block in self.children(): x = block(x) return x def _create_regnet(variant, pretrained, **kwargs): return build_model_with_cfg( RegNet, variant, pretrained, default_cfg=default_cfgs[variant], model_cfg=model_cfgs[variant], **kwargs) @register_model def regnetx_002(pretrained=False, **kwargs): """RegNetX-200MF""" return _create_regnet('regnetx_002', pretrained, **kwargs) @register_model def regnetx_004(pretrained=False, **kwargs): """RegNetX-400MF""" return _create_regnet('regnetx_004', pretrained, **kwargs) @register_model def regnetx_006(pretrained=False, **kwargs): """RegNetX-600MF""" return _create_regnet('regnetx_006', pretrained, **kwargs) @register_model def regnetx_008(pretrained=False, **kwargs): """RegNetX-800MF""" return _create_regnet('regnetx_008', pretrained, **kwargs) @register_model def regnetx_016(pretrained=False, **kwargs): """RegNetX-1.6GF""" return _create_regnet('regnetx_016', pretrained, **kwargs) @register_model def regnetx_032(pretrained=False, **kwargs): """RegNetX-3.2GF""" return _create_regnet('regnetx_032', pretrained, **kwargs) @register_model def regnetx_040(pretrained=False, **kwargs): """RegNetX-4.0GF""" return _create_regnet('regnetx_040', pretrained, **kwargs) @register_model def regnetx_064(pretrained=False, **kwargs): """RegNetX-6.4GF""" return _create_regnet('regnetx_064', pretrained, **kwargs) @register_model def regnetx_080(pretrained=False, **kwargs): """RegNetX-8.0GF""" return _create_regnet('regnetx_080', pretrained, **kwargs) @register_model def regnetx_120(pretrained=False, **kwargs): """RegNetX-12GF""" return _create_regnet('regnetx_120', pretrained, **kwargs) @register_model def regnetx_160(pretrained=False, **kwargs): """RegNetX-16GF""" return _create_regnet('regnetx_160', pretrained, **kwargs) @register_model def regnetx_320(pretrained=False, **kwargs): """RegNetX-32GF""" return _create_regnet('regnetx_320', pretrained, **kwargs) @register_model def regnety_002(pretrained=False, **kwargs): """RegNetY-200MF""" return _create_regnet('regnety_002', pretrained, **kwargs) @register_model def regnety_004(pretrained=False, **kwargs): """RegNetY-400MF""" return _create_regnet('regnety_004', pretrained, **kwargs) @register_model def regnety_006(pretrained=False, **kwargs): """RegNetY-600MF""" return _create_regnet('regnety_006', pretrained, **kwargs) @register_model def regnety_008(pretrained=False, **kwargs): """RegNetY-800MF""" return _create_regnet('regnety_008', pretrained, **kwargs) @register_model def regnety_016(pretrained=False, **kwargs): """RegNetY-1.6GF""" return _create_regnet('regnety_016', pretrained, **kwargs) @register_model def regnety_032(pretrained=False, **kwargs): """RegNetY-3.2GF""" return _create_regnet('regnety_032', pretrained, **kwargs) @register_model def regnety_040(pretrained=False, **kwargs): """RegNetY-4.0GF""" return _create_regnet('regnety_040', pretrained, **kwargs) @register_model def regnety_064(pretrained=False, **kwargs): """RegNetY-6.4GF""" return _create_regnet('regnety_064', pretrained, **kwargs) @register_model def regnety_080(pretrained=False, **kwargs): """RegNetY-8.0GF""" return _create_regnet('regnety_080', pretrained, **kwargs) @register_model def regnety_120(pretrained=False, **kwargs): """RegNetY-12GF""" return _create_regnet('regnety_120', pretrained, **kwargs) @register_model def regnety_160(pretrained=False, **kwargs): """RegNetY-16GF""" return _create_regnet('regnety_160', pretrained, **kwargs) @register_model def regnety_320(pretrained=False, **kwargs): """RegNetY-32GF""" return _create_regnet('regnety_320', pretrained, **kwargs)