""" Normalization + Activation Layers """ import torch from torch import nn as nn from torch.nn import functional as F from .create_act import get_act_layer class BatchNormAct2d(nn.BatchNorm2d): """BatchNorm + Activation This module performs BatchNorm + Activation in a manner that will remain backwards compatible with weights trained with separate bn, act. This is why we inherit from BN instead of composing it as a .bn member. """ def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True, apply_act=True, act_layer=nn.ReLU, inplace=True, drop_block=None): super(BatchNormAct2d, self).__init__( num_features, eps=eps, momentum=momentum, affine=affine, track_running_stats=track_running_stats) if isinstance(act_layer, str): act_layer = get_act_layer(act_layer) if act_layer is not None and apply_act: act_args = dict(inplace=True) if inplace else {} self.act = act_layer(**act_args) else: self.act = nn.Identity() def _forward_jit(self, x): """ A cut & paste of the contents of the PyTorch BatchNorm2d forward function """ # exponential_average_factor is self.momentum set to # (when it is available) only so that if gets updated # in ONNX graph when this node is exported to ONNX. if self.momentum is None: exponential_average_factor = 0.0 else: exponential_average_factor = self.momentum if self.training and self.track_running_stats: # TODO: if statement only here to tell the jit to skip emitting this when it is None if self.num_batches_tracked is not None: self.num_batches_tracked += 1 if self.momentum is None: # use cumulative moving average exponential_average_factor = 1.0 / float(self.num_batches_tracked) else: # use exponential moving average exponential_average_factor = self.momentum x = F.batch_norm( x, self.running_mean, self.running_var, self.weight, self.bias, self.training or not self.track_running_stats, exponential_average_factor, self.eps) return x @torch.jit.ignore def _forward_python(self, x): return super(BatchNormAct2d, self).forward(x) def forward(self, x): # FIXME cannot call parent forward() and maintain jit.script compatibility? if torch.jit.is_scripting(): x = self._forward_jit(x) else: x = self._forward_python(x) x = self.act(x) return x def group_norm_tpu(x, w, b, groups: int = 32, eps: float = 1e-5, diff_sqm: bool = False, flatten: bool = False): # This is a workaround for some odd behaviour running on PyTorch XLA w/ TPUs. x_shape = x.shape x_dtype = x.dtype if flatten: norm_shape = (x_shape[0], groups, -1) reduce_dim = -1 else: norm_shape = (x_shape[0], groups, x_shape[1] // groups) + x_shape[2:] reduce_dim = tuple(range(2, x.ndim + 1)) affine_shape = (1, -1) + (1,) * (x.ndim - 2) x = x.reshape(norm_shape) # x = x.to(torch.float32) # for testing w/ AMP xm = x.mean(dim=reduce_dim, keepdim=True) if diff_sqm: # difference of squared mean and mean squared, faster on TPU var = (x.square().mean(dim=reduce_dim, keepdim=True) - xm.square()).clamp(0) else: var = (x - xm).square().mean(dim=reduce_dim, keepdim=True) x = (x - xm.expand(norm_shape)) / var.add(eps).sqrt().expand(norm_shape) x = x.reshape(x_shape) * w.view(affine_shape) + b.view(affine_shape) # x = x.to(x_dtype) # for testing w/ AMP return x class GroupNormAct(nn.GroupNorm): # NOTE num_channel and num_groups order flipped for easier layer swaps / binding of fixed args def __init__(self, num_channels, num_groups=32, eps=1e-5, affine=True, apply_act=True, act_layer=nn.ReLU, inplace=True, drop_block=None): super(GroupNormAct, self).__init__(num_groups, num_channels, eps=eps, affine=affine) if isinstance(act_layer, str): act_layer = get_act_layer(act_layer) if act_layer is not None and apply_act: act_args = dict(inplace=True) if inplace else {} self.act = act_layer(**act_args) else: self.act = nn.Identity() def forward(self, x): if False: # FIXME TPU temporary while resolving some performance issues x = group_norm_tpu(x, self.weight, self.bias, self.num_groups, self.eps) else: x = F.group_norm(x, self.num_groups, self.weight, self.bias, self.eps) x = self.act(x) return x