"""These modules are adapted from those of timm, see https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py """ import torch import torch.nn as nn from functools import partial import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from .helpers import build_model_with_cfg from timm.models.helpers import load_pretrained from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from timm.models.registry import register_model import torch import torch.nn as nn import matplotlib.pyplot as plt def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, **kwargs } default_cfgs = { # ConViT 'convit_tiny': _cfg( url="https://dl.fbaipublicfiles.com/convit/convit_tiny.pth"), 'convit_small': _cfg( url="https://dl.fbaipublicfiles.com/convit/convit_small.pth"), 'convit_base': _cfg( url="https://dl.fbaipublicfiles.com/convit/convit_base.pth") } class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class GPSA(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., locality_strength=1., use_local_init=True): super().__init__() self.num_heads = num_heads self.dim = dim head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.qk = nn.Linear(dim, dim * 2, bias=qkv_bias) self.v = nn.Linear(dim, dim, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.pos_proj = nn.Linear(3, num_heads) self.proj_drop = nn.Dropout(proj_drop) self.locality_strength = locality_strength self.gating_param = nn.Parameter(torch.ones(self.num_heads)) self.apply(self._init_weights) if use_local_init: self.local_init(locality_strength=locality_strength) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward(self, x): B, N, C = x.shape if not hasattr(self, 'rel_indices') or self.rel_indices.size(1)!=N: self.get_rel_indices(N) attn = self.get_attention(x) v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x def get_attention(self, x): B, N, C = x.shape qk = self.qk(x).reshape(B, N, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k = qk[0], qk[1] pos_score = self.rel_indices.expand(B, -1, -1,-1) pos_score = self.pos_proj(pos_score).permute(0,3,1,2) patch_score = (q @ k.transpose(-2, -1)) * self.scale patch_score = patch_score.softmax(dim=-1) pos_score = pos_score.softmax(dim=-1) gating = self.gating_param.view(1,-1,1,1) attn = (1.-torch.sigmoid(gating)) * patch_score + torch.sigmoid(gating) * pos_score attn /= attn.sum(dim=-1).unsqueeze(-1) attn = self.attn_drop(attn) return attn def get_attention_map(self, x, return_map = False): attn_map = self.get_attention(x).mean(0) # average over batch distances = self.rel_indices.squeeze()[:,:,-1]**.5 dist = torch.einsum('nm,hnm->h', (distances, attn_map)) dist /= distances.size(0) if return_map: return dist, attn_map else: return dist def local_init(self, locality_strength=1.): self.v.weight.data.copy_(torch.eye(self.dim)) locality_distance = 1 #max(1,1/locality_strength**.5) kernel_size = int(self.num_heads**.5) center = (kernel_size-1)/2 if kernel_size%2==0 else kernel_size//2 for h1 in range(kernel_size): for h2 in range(kernel_size): position = h1+kernel_size*h2 self.pos_proj.weight.data[position,2] = -1 self.pos_proj.weight.data[position,1] = 2*(h1-center)*locality_distance self.pos_proj.weight.data[position,0] = 2*(h2-center)*locality_distance self.pos_proj.weight.data *= locality_strength def get_rel_indices(self, num_patches): img_size = int(num_patches**.5) rel_indices = torch.zeros(1, num_patches, num_patches, 3) ind = torch.arange(img_size).view(1,-1) - torch.arange(img_size).view(-1, 1) indx = ind.repeat(img_size,img_size) indy = ind.repeat_interleave(img_size,dim=0).repeat_interleave(img_size,dim=1) indd = indx**2 + indy**2 rel_indices[:,:,:,2] = indd.unsqueeze(0) rel_indices[:,:,:,1] = indy.unsqueeze(0) rel_indices[:,:,:,0] = indx.unsqueeze(0) device = self.qk.weight.device self.rel_indices = rel_indices.to(device) class MHSA(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def get_attention_map(self, x, return_map = False): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] attn_map = (q @ k.transpose(-2, -1)) * self.scale attn_map = attn_map.softmax(dim=-1).mean(0) img_size = int(N**.5) ind = torch.arange(img_size).view(1,-1) - torch.arange(img_size).view(-1, 1) indx = ind.repeat(img_size,img_size) indy = ind.repeat_interleave(img_size,dim=0).repeat_interleave(img_size,dim=1) indd = indx**2 + indy**2 distances = indd**.5 distances = distances.to('cuda') dist = torch.einsum('nm,hnm->h', (distances, attn_map)) dist /= N if return_map: return dist, attn_map else: return dist def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_gpsa=True, **kwargs): super().__init__() self.norm1 = norm_layer(dim) self.use_gpsa = use_gpsa if self.use_gpsa: self.attn = GPSA(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, **kwargs) else: self.attn = MHSA(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, **kwargs) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding, from timm """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) self.apply(self._init_weights) def forward(self, x): B, C, H, W = x.shape assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) return x def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) class HybridEmbed(nn.Module): """ CNN Feature Map Embedding, from timm """ def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768): super().__init__() assert isinstance(backbone, nn.Module) img_size = to_2tuple(img_size) self.img_size = img_size self.backbone = backbone if feature_size is None: with torch.no_grad(): training = backbone.training if training: backbone.eval() o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1] feature_size = o.shape[-2:] feature_dim = o.shape[1] backbone.train(training) else: feature_size = to_2tuple(feature_size) feature_dim = self.backbone.feature_info.channels()[-1] self.num_patches = feature_size[0] * feature_size[1] self.proj = nn.Linear(feature_dim, embed_dim) self.apply(self._init_weights) def forward(self, x): x = self.backbone(x)[-1] x = x.flatten(2).transpose(1, 2) x = self.proj(x) return x class ConViT(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=nn.LayerNorm, global_pool=None, local_up_to_layer=3, locality_strength=1., use_pos_embed=True): super().__init__() embed_dim *= num_heads self.num_classes = num_classes self.local_up_to_layer = local_up_to_layer self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.locality_strength = locality_strength self.use_pos_embed = use_pos_embed if hybrid_backbone is not None: self.patch_embed = HybridEmbed( hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) else: self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.num_patches = num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) if self.use_pos_embed: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) trunc_normal_(self.pos_embed, std=.02) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, use_gpsa=True, locality_strength=locality_strength) if i 0 else nn.Identity() trunc_normal_(self.cls_token, std=.02) self.head.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) if self.use_pos_embed: x = x + self.pos_embed x = self.pos_drop(x) for u,blk in enumerate(self.blocks): if u == self.local_up_to_layer : x = torch.cat((cls_tokens, x), dim=1) x = blk(x) x = self.norm(x) return x[:, 0] def forward(self, x): x = self.forward_features(x) x = self.head(x) return x def _create_convit(variant, pretrained=False, **kwargs): return build_model_with_cfg( ConViT, variant, pretrained, default_cfg=default_cfgs[variant], **kwargs) @register_model def convit_tiny(pretrained=False, **kwargs): model_args = dict( local_up_to_layer=10, locality_strength=1.0, embed_dim=48, num_heads=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model = _create_convit( variant='convit_tiny', pretrained=pretrained, **model_args) return model @register_model def convit_small(pretrained=False, **kwargs): model_args = dict( local_up_to_layer=10, locality_strength=1.0, embed_dim=48, num_heads=9, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model = _create_convit( variant='convit_small', pretrained=pretrained, **model_args) return model @register_model def convit_base(pretrained=False, **kwargs): model_args = dict( local_up_to_layer=10, locality_strength=1.0, embed_dim=48, num_heads=16, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model = _create_convit( variant='convit_base', pretrained=pretrained, **model_args) return model