"""Pre-Activation ResNet v2 with GroupNorm and Weight Standardization. A PyTorch implementation of ResNetV2 adapted from the Google Big-Transfoer (BiT) source code at https://github.com/google-research/big_transfer to match timm interfaces. The BiT weights have been included here as pretrained models from their original .NPZ checkpoints. Additionally, supports non pre-activation bottleneck for use as a backbone for Vision Transfomers (ViT) and extra padding support to allow porting of official Hybrid ResNet pretrained weights from https://github.com/google-research/vision_transformer Thanks to the Google team for the above two repositories and associated papers: * Big Transfer (BiT): General Visual Representation Learning - https://arxiv.org/abs/1912.11370 * An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale - https://arxiv.org/abs/2010.11929 * Knowledge distillation: A good teacher is patient and consistent - https://arxiv.org/abs/2106.05237 Original copyright of Google code below, modifications by Ross Wightman, Copyright 2020. """ # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict # pylint: disable=g-importing-member import torch import torch.nn as nn from functools import partial from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD from .helpers import build_model_with_cfg, named_apply, adapt_input_conv from .registry import register_model from .layers import GroupNormAct, ClassifierHead, DropPath, AvgPool2dSame, create_pool2d, StdConv2d, create_conv2d def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 480, 480), 'pool_size': (7, 7), 'crop_pct': 1.0, 'interpolation': 'bilinear', 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, 'first_conv': 'stem.conv', 'classifier': 'head.fc', **kwargs } default_cfgs = { # pretrained on imagenet21k, finetuned on imagenet1k 'resnetv2_50x1_bitm': _cfg( url='https://storage.googleapis.com/bit_models/BiT-M-R50x1-ILSVRC2012.npz'), 'resnetv2_50x3_bitm': _cfg( url='https://storage.googleapis.com/bit_models/BiT-M-R50x3-ILSVRC2012.npz'), 'resnetv2_101x1_bitm': _cfg( url='https://storage.googleapis.com/bit_models/BiT-M-R101x1-ILSVRC2012.npz'), 'resnetv2_101x3_bitm': _cfg( url='https://storage.googleapis.com/bit_models/BiT-M-R101x3-ILSVRC2012.npz'), 'resnetv2_152x2_bitm': _cfg( url='https://storage.googleapis.com/bit_models/BiT-M-R152x2-ILSVRC2012.npz'), 'resnetv2_152x4_bitm': _cfg( url='https://storage.googleapis.com/bit_models/BiT-M-R152x4-ILSVRC2012.npz'), # trained on imagenet-21k 'resnetv2_50x1_bitm_in21k': _cfg( url='https://storage.googleapis.com/bit_models/BiT-M-R50x1.npz', num_classes=21843), 'resnetv2_50x3_bitm_in21k': _cfg( url='https://storage.googleapis.com/bit_models/BiT-M-R50x3.npz', num_classes=21843), 'resnetv2_101x1_bitm_in21k': _cfg( url='https://storage.googleapis.com/bit_models/BiT-M-R101x1.npz', num_classes=21843), 'resnetv2_101x3_bitm_in21k': _cfg( url='https://storage.googleapis.com/bit_models/BiT-M-R101x3.npz', num_classes=21843), 'resnetv2_152x2_bitm_in21k': _cfg( url='https://storage.googleapis.com/bit_models/BiT-M-R152x2.npz', num_classes=21843), 'resnetv2_152x4_bitm_in21k': _cfg( url='https://storage.googleapis.com/bit_models/BiT-M-R152x4.npz', num_classes=21843), 'resnetv2_50x1_bit_distilled': _cfg( url='https://storage.googleapis.com/bit_models/distill/R50x1_224.npz', input_size=(3, 224, 224), crop_pct=0.875, interpolation='bicubic'), 'resnetv2_152x2_bit_teacher': _cfg( url='https://storage.googleapis.com/bit_models/distill/R152x2_T_224.npz', input_size=(3, 224, 224), crop_pct=0.875, interpolation='bicubic'), 'resnetv2_152x2_bit_teacher_384': _cfg( url='https://storage.googleapis.com/bit_models/distill/R152x2_T_384.npz', input_size=(3, 384, 384), crop_pct=1.0, interpolation='bicubic'), 'resnetv2_50': _cfg( input_size=(3, 224, 224), crop_pct=0.875, interpolation='bicubic'), 'resnetv2_50d': _cfg( input_size=(3, 224, 224), crop_pct=0.875, interpolation='bicubic', first_conv='stem.conv1'), } def make_div(v, divisor=8): min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) if new_v < 0.9 * v: new_v += divisor return new_v class PreActBottleneck(nn.Module): """Pre-activation (v2) bottleneck block. Follows the implementation of "Identity Mappings in Deep Residual Networks": https://github.com/KaimingHe/resnet-1k-layers/blob/master/resnet-pre-act.lua Except it puts the stride on 3x3 conv when available. """ def __init__( self, in_chs, out_chs=None, bottle_ratio=0.25, stride=1, dilation=1, first_dilation=None, groups=1, act_layer=None, conv_layer=None, norm_layer=None, proj_layer=None, drop_path_rate=0.): super().__init__() first_dilation = first_dilation or dilation conv_layer = conv_layer or StdConv2d norm_layer = norm_layer or partial(GroupNormAct, num_groups=32) out_chs = out_chs or in_chs mid_chs = make_div(out_chs * bottle_ratio) if proj_layer is not None: self.downsample = proj_layer( in_chs, out_chs, stride=stride, dilation=dilation, first_dilation=first_dilation, preact=True, conv_layer=conv_layer, norm_layer=norm_layer) else: self.downsample = None self.norm1 = norm_layer(in_chs) self.conv1 = conv_layer(in_chs, mid_chs, 1) self.norm2 = norm_layer(mid_chs) self.conv2 = conv_layer(mid_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups) self.norm3 = norm_layer(mid_chs) self.conv3 = conv_layer(mid_chs, out_chs, 1) self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() def zero_init_last_bn(self): nn.init.zeros_(self.norm3.weight) def forward(self, x): x_preact = self.norm1(x) # shortcut branch shortcut = x if self.downsample is not None: shortcut = self.downsample(x_preact) # residual branch x = self.conv1(x_preact) x = self.conv2(self.norm2(x)) x = self.conv3(self.norm3(x)) x = self.drop_path(x) return x + shortcut class Bottleneck(nn.Module): """Non Pre-activation bottleneck block, equiv to V1.5/V1b Bottleneck. Used for ViT. """ def __init__( self, in_chs, out_chs=None, bottle_ratio=0.25, stride=1, dilation=1, first_dilation=None, groups=1, act_layer=None, conv_layer=None, norm_layer=None, proj_layer=None, drop_path_rate=0.): super().__init__() first_dilation = first_dilation or dilation act_layer = act_layer or nn.ReLU conv_layer = conv_layer or StdConv2d norm_layer = norm_layer or partial(GroupNormAct, num_groups=32) out_chs = out_chs or in_chs mid_chs = make_div(out_chs * bottle_ratio) if proj_layer is not None: self.downsample = proj_layer( in_chs, out_chs, stride=stride, dilation=dilation, preact=False, conv_layer=conv_layer, norm_layer=norm_layer) else: self.downsample = None self.conv1 = conv_layer(in_chs, mid_chs, 1) self.norm1 = norm_layer(mid_chs) self.conv2 = conv_layer(mid_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups) self.norm2 = norm_layer(mid_chs) self.conv3 = conv_layer(mid_chs, out_chs, 1) self.norm3 = norm_layer(out_chs, apply_act=False) self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() self.act3 = act_layer(inplace=True) def zero_init_last_bn(self): nn.init.zeros_(self.norm3.weight) def forward(self, x): # shortcut branch shortcut = x if self.downsample is not None: shortcut = self.downsample(x) # residual x = self.conv1(x) x = self.norm1(x) x = self.conv2(x) x = self.norm2(x) x = self.conv3(x) x = self.norm3(x) x = self.drop_path(x) x = self.act3(x + shortcut) return x class DownsampleConv(nn.Module): def __init__( self, in_chs, out_chs, stride=1, dilation=1, first_dilation=None, preact=True, conv_layer=None, norm_layer=None): super(DownsampleConv, self).__init__() self.conv = conv_layer(in_chs, out_chs, 1, stride=stride) self.norm = nn.Identity() if preact else norm_layer(out_chs, apply_act=False) def forward(self, x): return self.norm(self.conv(x)) class DownsampleAvg(nn.Module): def __init__( self, in_chs, out_chs, stride=1, dilation=1, first_dilation=None, preact=True, conv_layer=None, norm_layer=None): """ AvgPool Downsampling as in 'D' ResNet variants. This is not in RegNet space but I might experiment.""" super(DownsampleAvg, self).__init__() avg_stride = stride if dilation == 1 else 1 if stride > 1 or dilation > 1: avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) else: self.pool = nn.Identity() self.conv = conv_layer(in_chs, out_chs, 1, stride=1) self.norm = nn.Identity() if preact else norm_layer(out_chs, apply_act=False) def forward(self, x): return self.norm(self.conv(self.pool(x))) class ResNetStage(nn.Module): """ResNet Stage.""" def __init__(self, in_chs, out_chs, stride, dilation, depth, bottle_ratio=0.25, groups=1, avg_down=False, block_dpr=None, block_fn=PreActBottleneck, act_layer=None, conv_layer=None, norm_layer=None, **block_kwargs): super(ResNetStage, self).__init__() first_dilation = 1 if dilation in (1, 2) else 2 layer_kwargs = dict(act_layer=act_layer, conv_layer=conv_layer, norm_layer=norm_layer) proj_layer = DownsampleAvg if avg_down else DownsampleConv prev_chs = in_chs self.blocks = nn.Sequential() for block_idx in range(depth): drop_path_rate = block_dpr[block_idx] if block_dpr else 0. stride = stride if block_idx == 0 else 1 self.blocks.add_module(str(block_idx), block_fn( prev_chs, out_chs, stride=stride, dilation=dilation, bottle_ratio=bottle_ratio, groups=groups, first_dilation=first_dilation, proj_layer=proj_layer, drop_path_rate=drop_path_rate, **layer_kwargs, **block_kwargs)) prev_chs = out_chs first_dilation = dilation proj_layer = None def forward(self, x): x = self.blocks(x) return x def create_resnetv2_stem( in_chs, out_chs=64, stem_type='', preact=True, conv_layer=StdConv2d, norm_layer=partial(GroupNormAct, num_groups=32)): stem = OrderedDict() assert stem_type in ('', 'fixed', 'same', 'deep', 'deep_fixed', 'deep_same') # NOTE conv padding mode can be changed by overriding the conv_layer def if 'deep' in stem_type: # A 3 deep 3x3 conv stack as in ResNet V1D models mid_chs = out_chs // 2 stem['conv1'] = conv_layer(in_chs, mid_chs, kernel_size=3, stride=2) stem['norm1'] = norm_layer(mid_chs) stem['conv2'] = conv_layer(mid_chs, mid_chs, kernel_size=3, stride=1) stem['norm2'] = norm_layer(mid_chs) stem['conv3'] = conv_layer(mid_chs, out_chs, kernel_size=3, stride=1) if not preact: stem['norm3'] = norm_layer(out_chs) else: # The usual 7x7 stem conv stem['conv'] = conv_layer(in_chs, out_chs, kernel_size=7, stride=2) if not preact: stem['norm'] = norm_layer(out_chs) if 'fixed' in stem_type: # 'fixed' SAME padding approximation that is used in BiT models stem['pad'] = nn.ConstantPad2d(1, 0.) stem['pool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=0) elif 'same' in stem_type: # full, input size based 'SAME' padding, used in ViT Hybrid model stem['pool'] = create_pool2d('max', kernel_size=3, stride=2, padding='same') else: # the usual PyTorch symmetric padding stem['pool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) return nn.Sequential(stem) class ResNetV2(nn.Module): """Implementation of Pre-activation (v2) ResNet mode. """ def __init__( self, layers, channels=(256, 512, 1024, 2048), num_classes=1000, in_chans=3, global_pool='avg', output_stride=32, width_factor=1, stem_chs=64, stem_type='', avg_down=False, preact=True, act_layer=nn.ReLU, conv_layer=StdConv2d, norm_layer=partial(GroupNormAct, num_groups=32), drop_rate=0., drop_path_rate=0., zero_init_last_bn=True): super().__init__() self.num_classes = num_classes self.drop_rate = drop_rate wf = width_factor self.feature_info = [] stem_chs = make_div(stem_chs * wf) self.stem = create_resnetv2_stem( in_chans, stem_chs, stem_type, preact, conv_layer=conv_layer, norm_layer=norm_layer) stem_feat = ('stem.conv3' if 'deep' in stem_type else 'stem.conv') if preact else 'stem.norm' self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=stem_feat)) prev_chs = stem_chs curr_stride = 4 dilation = 1 block_dprs = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(layers)).split(layers)] block_fn = PreActBottleneck if preact else Bottleneck self.stages = nn.Sequential() for stage_idx, (d, c, bdpr) in enumerate(zip(layers, channels, block_dprs)): out_chs = make_div(c * wf) stride = 1 if stage_idx == 0 else 2 if curr_stride >= output_stride: dilation *= stride stride = 1 stage = ResNetStage( prev_chs, out_chs, stride=stride, dilation=dilation, depth=d, avg_down=avg_down, act_layer=act_layer, conv_layer=conv_layer, norm_layer=norm_layer, block_dpr=bdpr, block_fn=block_fn) prev_chs = out_chs curr_stride *= stride self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{stage_idx}')] self.stages.add_module(str(stage_idx), stage) self.num_features = prev_chs self.norm = norm_layer(self.num_features) if preact else nn.Identity() self.head = ClassifierHead( self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate, use_conv=True) self.init_weights(zero_init_last_bn=zero_init_last_bn) def init_weights(self, zero_init_last_bn=True): named_apply(partial(_init_weights, zero_init_last_bn=zero_init_last_bn), self) @torch.jit.ignore() def load_pretrained(self, checkpoint_path, prefix='resnet/'): _load_weights(self, checkpoint_path, prefix) def get_classifier(self): return self.head.fc def reset_classifier(self, num_classes, global_pool='avg'): self.num_classes = num_classes self.head = ClassifierHead( self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate, use_conv=True) def forward_features(self, x): x = self.stem(x) x = self.stages(x) x = self.norm(x) return x def forward(self, x): x = self.forward_features(x) x = self.head(x) return x def _init_weights(module: nn.Module, name: str = '', zero_init_last_bn=True): if isinstance(module, nn.Linear) or ('head.fc' in name and isinstance(module, nn.Conv2d)): nn.init.normal_(module.weight, mean=0.0, std=0.01) nn.init.zeros_(module.bias) elif isinstance(module, nn.Conv2d): nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, (nn.BatchNorm2d, nn.LayerNorm, nn.GroupNorm)): nn.init.ones_(module.weight) nn.init.zeros_(module.bias) elif zero_init_last_bn and hasattr(module, 'zero_init_last_bn'): module.zero_init_last_bn() @torch.no_grad() def _load_weights(model: nn.Module, checkpoint_path: str, prefix: str = 'resnet/'): import numpy as np def t2p(conv_weights): """Possibly convert HWIO to OIHW.""" if conv_weights.ndim == 4: conv_weights = conv_weights.transpose([3, 2, 0, 1]) return torch.from_numpy(conv_weights) weights = np.load(checkpoint_path) stem_conv_w = adapt_input_conv( model.stem.conv.weight.shape[1], t2p(weights[f'{prefix}root_block/standardized_conv2d/kernel'])) model.stem.conv.weight.copy_(stem_conv_w) model.norm.weight.copy_(t2p(weights[f'{prefix}group_norm/gamma'])) model.norm.bias.copy_(t2p(weights[f'{prefix}group_norm/beta'])) if model.head.fc.weight.shape[0] == weights[f'{prefix}head/conv2d/kernel'].shape[-1]: model.head.fc.weight.copy_(t2p(weights[f'{prefix}head/conv2d/kernel'])) model.head.fc.bias.copy_(t2p(weights[f'{prefix}head/conv2d/bias'])) for i, (sname, stage) in enumerate(model.stages.named_children()): for j, (bname, block) in enumerate(stage.blocks.named_children()): cname = 'standardized_conv2d' block_prefix = f'{prefix}block{i + 1}/unit{j + 1:02d}/' block.conv1.weight.copy_(t2p(weights[f'{block_prefix}a/{cname}/kernel'])) block.conv2.weight.copy_(t2p(weights[f'{block_prefix}b/{cname}/kernel'])) block.conv3.weight.copy_(t2p(weights[f'{block_prefix}c/{cname}/kernel'])) block.norm1.weight.copy_(t2p(weights[f'{block_prefix}a/group_norm/gamma'])) block.norm2.weight.copy_(t2p(weights[f'{block_prefix}b/group_norm/gamma'])) block.norm3.weight.copy_(t2p(weights[f'{block_prefix}c/group_norm/gamma'])) block.norm1.bias.copy_(t2p(weights[f'{block_prefix}a/group_norm/beta'])) block.norm2.bias.copy_(t2p(weights[f'{block_prefix}b/group_norm/beta'])) block.norm3.bias.copy_(t2p(weights[f'{block_prefix}c/group_norm/beta'])) if block.downsample is not None: w = weights[f'{block_prefix}a/proj/{cname}/kernel'] block.downsample.conv.weight.copy_(t2p(w)) def _create_resnetv2(variant, pretrained=False, **kwargs): feature_cfg = dict(flatten_sequential=True) return build_model_with_cfg( ResNetV2, variant, pretrained, default_cfg=default_cfgs[variant], feature_cfg=feature_cfg, pretrained_custom_load=True, **kwargs) def _create_resnetv2_bit(variant, pretrained=False, **kwargs): return _create_resnetv2( variant, pretrained=pretrained, stem_type='fixed', conv_layer=partial(StdConv2d, eps=1e-8), **kwargs) @register_model def resnetv2_50x1_bitm(pretrained=False, **kwargs): return _create_resnetv2_bit( 'resnetv2_50x1_bitm', pretrained=pretrained, layers=[3, 4, 6, 3], width_factor=1, **kwargs) @register_model def resnetv2_50x3_bitm(pretrained=False, **kwargs): return _create_resnetv2_bit( 'resnetv2_50x3_bitm', pretrained=pretrained, layers=[3, 4, 6, 3], width_factor=3, **kwargs) @register_model def resnetv2_101x1_bitm(pretrained=False, **kwargs): return _create_resnetv2_bit( 'resnetv2_101x1_bitm', pretrained=pretrained, layers=[3, 4, 23, 3], width_factor=1, **kwargs) @register_model def resnetv2_101x3_bitm(pretrained=False, **kwargs): return _create_resnetv2_bit( 'resnetv2_101x3_bitm', pretrained=pretrained, layers=[3, 4, 23, 3], width_factor=3, **kwargs) @register_model def resnetv2_152x2_bitm(pretrained=False, **kwargs): return _create_resnetv2_bit( 'resnetv2_152x2_bitm', pretrained=pretrained, layers=[3, 8, 36, 3], width_factor=2, **kwargs) @register_model def resnetv2_152x4_bitm(pretrained=False, **kwargs): return _create_resnetv2_bit( 'resnetv2_152x4_bitm', pretrained=pretrained, layers=[3, 8, 36, 3], width_factor=4, **kwargs) @register_model def resnetv2_50x1_bitm_in21k(pretrained=False, **kwargs): return _create_resnetv2_bit( 'resnetv2_50x1_bitm_in21k', pretrained=pretrained, num_classes=kwargs.pop('num_classes', 21843), layers=[3, 4, 6, 3], width_factor=1, **kwargs) @register_model def resnetv2_50x3_bitm_in21k(pretrained=False, **kwargs): return _create_resnetv2_bit( 'resnetv2_50x3_bitm_in21k', pretrained=pretrained, num_classes=kwargs.pop('num_classes', 21843), layers=[3, 4, 6, 3], width_factor=3, **kwargs) @register_model def resnetv2_101x1_bitm_in21k(pretrained=False, **kwargs): return _create_resnetv2( 'resnetv2_101x1_bitm_in21k', pretrained=pretrained, num_classes=kwargs.pop('num_classes', 21843), layers=[3, 4, 23, 3], width_factor=1, **kwargs) @register_model def resnetv2_101x3_bitm_in21k(pretrained=False, **kwargs): return _create_resnetv2_bit( 'resnetv2_101x3_bitm_in21k', pretrained=pretrained, num_classes=kwargs.pop('num_classes', 21843), layers=[3, 4, 23, 3], width_factor=3, **kwargs) @register_model def resnetv2_152x2_bitm_in21k(pretrained=False, **kwargs): return _create_resnetv2_bit( 'resnetv2_152x2_bitm_in21k', pretrained=pretrained, num_classes=kwargs.pop('num_classes', 21843), layers=[3, 8, 36, 3], width_factor=2, **kwargs) @register_model def resnetv2_152x4_bitm_in21k(pretrained=False, **kwargs): return _create_resnetv2_bit( 'resnetv2_152x4_bitm_in21k', pretrained=pretrained, num_classes=kwargs.pop('num_classes', 21843), layers=[3, 8, 36, 3], width_factor=4, **kwargs) @register_model def resnetv2_50x1_bit_distilled(pretrained=False, **kwargs): """ ResNetV2-50x1-BiT Distilled Paper: Knowledge distillation: A good teacher is patient and consistent - https://arxiv.org/abs/2106.05237 """ return _create_resnetv2_bit( 'resnetv2_50x1_bit_distilled', pretrained=pretrained, layers=[3, 4, 6, 3], width_factor=1, **kwargs) @register_model def resnetv2_152x2_bit_teacher(pretrained=False, **kwargs): """ ResNetV2-152x2-BiT Teacher Paper: Knowledge distillation: A good teacher is patient and consistent - https://arxiv.org/abs/2106.05237 """ return _create_resnetv2_bit( 'resnetv2_152x2_bit_teacher', pretrained=pretrained, layers=[3, 8, 36, 3], width_factor=2, **kwargs) @register_model def resnetv2_152x2_bit_teacher_384(pretrained=False, **kwargs): """ ResNetV2-152xx-BiT Teacher @ 384x384 Paper: Knowledge distillation: A good teacher is patient and consistent - https://arxiv.org/abs/2106.05237 """ return _create_resnetv2_bit( 'resnetv2_152x2_bit_teacher_384', pretrained=pretrained, layers=[3, 8, 36, 3], width_factor=2, **kwargs) @register_model def resnetv2_50(pretrained=False, **kwargs): return _create_resnetv2( 'resnetv2_50', pretrained=pretrained, layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=nn.BatchNorm2d, **kwargs) @register_model def resnetv2_50d(pretrained=False, **kwargs): return _create_resnetv2( 'resnetv2_50d', pretrained=pretrained, layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=nn.BatchNorm2d, stem_type='deep', avg_down=True, **kwargs)