import torch class AvgTensor: """Computes and stores the average and current value""" def __init__(self): self.sum = None self.count = None self.reset() # FIXME handle distributed operation def reset(self): self.sum = None self.count = None def update(self, val: torch.Tensor, n=1): if self.sum is None: self.sum = torch.zeros_like(val) self.count = torch.tensor(0, dtype=torch.long, device=val.device) self.sum += (val * n) self.count += n def compute(self): return self.sum / self.count class TensorEma: """Computes and stores the average and current value""" def __init__(self, smoothing_factor=0.9, init_zero=False): self.smoothing_factor = smoothing_factor self.init_zero = init_zero self.val = None self.reset() # FIXME handle distributed operation def reset(self): self.val = None def update(self, val): if self.val is None: self.val = torch.zeros_like(val) if self.init_zero else val.clone() self.val = (1. - self.smoothing_factor) * val + self.smoothing_factor * self.val