""" Triplet Attention Module Implementation of triplet attention module from https://arxiv.org/abs/2010.03045 (slightly) Modified from official implementation: https://github.com/LandskapeAI/triplet-attention Original license: MIT License Copyright (c) 2020 LandskapeAI Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import torch from torch import nn as nn from .conv_bn_act import ConvBnAct class ZPool(nn.Module): def forward(self, x): return torch.cat( (torch.max(x,1)[0].unsqueeze(1), torch.mean(x,1).unsqueeze(1)), dim=1 ) class AttentionGate(nn.Module): def __init__(self, kernel_size=7): super(AttentionGate, self).__init__() self.zpool = ZPool() self.conv = ConvBnAct(2, 1, kernel_size=kernel_size, stride=1, padding=(kernel_size-1) // 2, apply_act=False) def forward(self, x): x_out = self.conv(self.zpool(x)) scale = torch.sigmoid_(x_out) return x * scale class TripletAttention(nn.Module): def __init__(self, no_spatial=False): super(TripletAttention, self).__init__() self.cw = AttentionGate() self.hc = AttentionGate() self.no_spatial=no_spatial if not no_spatial: self.hw = AttentionGate() def forward(self, x): x_perm1 = x.permute(0,2,1,3).contiguous() x_out1 = self.cw(x_perm1) x_out11 = x_out1.permute(0,2,1,3).contiguous() x_perm2 = x.permute(0,3,2,1).contiguous() x_out2 = self.hc(x_perm2) x_out21 = x_out2.permute(0,3,2,1).contiguous() if not self.no_spatial: x_out = self.hw(x) x_out = (1/3) * (x_out + x_out11 + x_out21) else: x_out = 0.5 * (x_out11 + x_out21) return x_out