import math import torch from torch.utils.data import Sampler import torch.distributed as dist class OrderedDistributedSampler(Sampler): """Sampler that restricts data loading to a subset of the dataset. It is especially useful in conjunction with :class:`torch.nn.parallel.DistributedDataParallel`. In such case, each process can pass a DistributedSampler instance as a DataLoader sampler, and load a subset of the original dataset that is exclusive to it. .. note:: Dataset is assumed to be of constant size. Arguments: dataset: Dataset used for sampling. num_replicas (optional): Number of processes participating in distributed training. rank (optional): Rank of the current process within num_replicas. """ def __init__(self, dataset, num_replicas=None, rank=None): if num_replicas is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") num_replicas = dist.get_world_size() if rank is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") rank = dist.get_rank() self.dataset = dataset self.num_replicas = num_replicas self.rank = rank self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) self.total_size = self.num_samples * self.num_replicas def __iter__(self): indices = list(range(len(self.dataset))) # add extra samples to make it evenly divisible indices += indices[:(self.total_size - len(indices))] assert len(indices) == self.total_size # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices) def __len__(self): return self.num_samples class RepeatAugSampler(Sampler): """Sampler that restricts data loading to a subset of the dataset for distributed, with repeated augmentation. It ensures that different each augmented version of a sample will be visible to a different process (GPU). Heavily based on torch.utils.data.DistributedSampler This sampler was taken from https://github.com/facebookresearch/deit/blob/0c4b8f60/samplers.py Used in Copyright (c) 2015-present, Facebook, Inc. """ def __init__( self, dataset, num_replicas=None, rank=None, shuffle=True, num_repeats=3, selected_round=256, selected_ratio=0, ): if num_replicas is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") num_replicas = dist.get_world_size() if rank is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") rank = dist.get_rank() self.dataset = dataset self.num_replicas = num_replicas self.rank = rank self.shuffle = shuffle self.num_repeats = num_repeats self.epoch = 0 self.num_samples = int(math.ceil(len(self.dataset) * num_repeats / self.num_replicas)) self.total_size = self.num_samples * self.num_replicas # Determine the number of samples to select per epoch for each rank. # num_selected logic defaults to be the same as original RASampler impl, but this one can be tweaked # via selected_ratio and selected_round args. selected_ratio = selected_ratio or num_replicas # ratio to reduce selected samples by, num_replicas if 0 if selected_round: self.num_selected_samples = int(math.floor( len(self.dataset) // selected_round * selected_round / selected_ratio)) else: self.num_selected_samples = int(math.ceil(len(self.dataset) / selected_ratio)) def __iter__(self): # deterministically shuffle based on epoch g = torch.Generator() g.manual_seed(self.epoch) if self.shuffle: indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = list(range(len(self.dataset))) # produce repeats e.g. [0, 0, 0, 1, 1, 1, 2, 2, 2....] indices = [x for x in indices for _ in range(self.num_repeats)] # add extra samples to make it evenly divisible padding_size = self.total_size - len(indices) indices += indices[:padding_size] assert len(indices) == self.total_size # subsample per rank indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples # return up to num selected samples return iter(indices[:self.num_selected_samples]) def __len__(self): return self.num_selected_samples def set_epoch(self, epoch): self.epoch = epoch