""" CoaT architecture. Modified from timm/models/vision_transformer.py """ import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from timm.models.registry import register_model from einops import rearrange from functools import partial from torch import nn, einsum __all__ = [ "coat_tiny", "coat_mini", "coat_lite_tiny", "coat_lite_mini", "coat_lite_small" ] def _cfg_coat(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs } class Mlp(nn.Module): """ Feed-forward network (FFN, a.k.a. MLP) class. """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class ConvRelPosEnc(nn.Module): """ Convolutional relative position encoding. """ def __init__(self, Ch, h, window): """ Initialization. Ch: Channels per head. h: Number of heads. window: Window size(s) in convolutional relative positional encoding. It can have two forms: 1. An integer of window size, which assigns all attention heads with the same window size in ConvRelPosEnc. 2. A dict mapping window size to #attention head splits (e.g. {window size 1: #attention head split 1, window size 2: #attention head split 2}) It will apply different window size to the attention head splits. """ super().__init__() if isinstance(window, int): window = {window: h} # Set the same window size for all attention heads. self.window = window elif isinstance(window, dict): self.window = window else: raise ValueError() self.conv_list = nn.ModuleList() self.head_splits = [] for cur_window, cur_head_split in window.items(): dilation = 1 # Use dilation=1 at default. padding_size = (cur_window + (cur_window - 1) * (dilation - 1)) // 2 # Determine padding size. Ref: https://discuss.pytorch.org/t/how-to-keep-the-shape-of-input-and-output-same-when-dilation-conv/14338 cur_conv = nn.Conv2d(cur_head_split*Ch, cur_head_split*Ch, kernel_size=(cur_window, cur_window), padding=(padding_size, padding_size), dilation=(dilation, dilation), groups=cur_head_split*Ch, ) self.conv_list.append(cur_conv) self.head_splits.append(cur_head_split) self.channel_splits = [x*Ch for x in self.head_splits] def forward(self, q, v, size): B, h, N, Ch = q.shape H, W = size assert N == 1 + H * W # Convolutional relative position encoding. q_img = q[:,:,1:,:] # Shape: [B, h, H*W, Ch]. v_img = v[:,:,1:,:] # Shape: [B, h, H*W, Ch]. v_img = rearrange(v_img, 'B h (H W) Ch -> B (h Ch) H W', H=H, W=W) # Shape: [B, h, H*W, Ch] -> [B, h*Ch, H, W]. v_img_list = torch.split(v_img, self.channel_splits, dim=1) # Split according to channels. conv_v_img_list = [conv(x) for conv, x in zip(self.conv_list, v_img_list)] conv_v_img = torch.cat(conv_v_img_list, dim=1) conv_v_img = rearrange(conv_v_img, 'B (h Ch) H W -> B h (H W) Ch', h=h) # Shape: [B, h*Ch, H, W] -> [B, h, H*W, Ch]. EV_hat_img = q_img * conv_v_img zero = torch.zeros((B, h, 1, Ch), dtype=q.dtype, layout=q.layout, device=q.device) EV_hat = torch.cat((zero, EV_hat_img), dim=2) # Shape: [B, h, N, Ch]. return EV_hat class FactorAtt_ConvRelPosEnc(nn.Module): """ Factorized attention with convolutional relative position encoding class. """ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., shared_crpe=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) # Note: attn_drop is actually not used. self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) # Shared convolutional relative position encoding. self.crpe = shared_crpe def forward(self, x, size): B, N, C = x.shape # Generate Q, K, V. qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) # Shape: [3, B, h, N, Ch]. q, k, v = qkv[0], qkv[1], qkv[2] # Shape: [B, h, N, Ch]. # Factorized attention. k_softmax = k.softmax(dim=2) # Softmax on dim N. k_softmax_T_dot_v = einsum('b h n k, b h n v -> b h k v', k_softmax, v) # Shape: [B, h, Ch, Ch]. factor_att = einsum('b h n k, b h k v -> b h n v', q, k_softmax_T_dot_v) # Shape: [B, h, N, Ch]. # Convolutional relative position encoding. crpe = self.crpe(q, v, size=size) # Shape: [B, h, N, Ch]. # Merge and reshape. x = self.scale * factor_att + crpe x = x.transpose(1, 2).reshape(B, N, C) # Shape: [B, h, N, Ch] -> [B, N, h, Ch] -> [B, N, C]. # Output projection. x = self.proj(x) x = self.proj_drop(x) return x # Shape: [B, N, C]. class ConvPosEnc(nn.Module): """ Convolutional Position Encoding. Note: This module is similar to the conditional position encoding in CPVT. """ def __init__(self, dim, k=3): super(ConvPosEnc, self).__init__() self.proj = nn.Conv2d(dim, dim, k, 1, k//2, groups=dim) def forward(self, x, size): B, N, C = x.shape H, W = size assert N == 1 + H * W # Extract CLS token and image tokens. cls_token, img_tokens = x[:, :1], x[:, 1:] # Shape: [B, 1, C], [B, H*W, C]. # Depthwise convolution. feat = img_tokens.transpose(1, 2).view(B, C, H, W) x = self.proj(feat) + feat x = x.flatten(2).transpose(1, 2) # Combine with CLS token. x = torch.cat((cls_token, x), dim=1) return x class SerialBlock(nn.Module): """ Serial block class. Note: In this implementation, each serial block only contains a conv-attention and a FFN (MLP) module. """ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, shared_cpe=None, shared_crpe=None): super().__init__() # Conv-Attention. self.cpe = shared_cpe self.norm1 = norm_layer(dim) self.factoratt_crpe = FactorAtt_ConvRelPosEnc( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, shared_crpe=shared_crpe) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() # MLP. self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, size): # Conv-Attention. x = self.cpe(x, size) # Apply convolutional position encoding. cur = self.norm1(x) cur = self.factoratt_crpe(cur, size) # Apply factorized attention and convolutional relative position encoding. x = x + self.drop_path(cur) # MLP. cur = self.norm2(x) cur = self.mlp(cur) x = x + self.drop_path(cur) return x class ParallelBlock(nn.Module): """ Parallel block class. """ def __init__(self, dims, num_heads, mlp_ratios=[], qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, shared_cpes=None, shared_crpes=None): super().__init__() # Conv-Attention. self.cpes = shared_cpes self.norm12 = norm_layer(dims[1]) self.norm13 = norm_layer(dims[2]) self.norm14 = norm_layer(dims[3]) self.factoratt_crpe2 = FactorAtt_ConvRelPosEnc( dims[1], num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, shared_crpe=shared_crpes[1] ) self.factoratt_crpe3 = FactorAtt_ConvRelPosEnc( dims[2], num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, shared_crpe=shared_crpes[2] ) self.factoratt_crpe4 = FactorAtt_ConvRelPosEnc( dims[3], num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, shared_crpe=shared_crpes[3] ) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() # MLP. self.norm22 = norm_layer(dims[1]) self.norm23 = norm_layer(dims[2]) self.norm24 = norm_layer(dims[3]) assert dims[1] == dims[2] == dims[3] # In parallel block, we assume dimensions are the same and share the linear transformation. assert mlp_ratios[1] == mlp_ratios[2] == mlp_ratios[3] mlp_hidden_dim = int(dims[1] * mlp_ratios[1]) self.mlp2 = self.mlp3 = self.mlp4 = Mlp(in_features=dims[1], hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def upsample(self, x, factor, size): """ Feature map up-sampling. """ return self.interpolate(x, scale_factor=factor, size=size) def downsample(self, x, factor, size): """ Feature map down-sampling. """ return self.interpolate(x, scale_factor=1.0/factor, size=size) def interpolate(self, x, scale_factor, size): """ Feature map interpolation. """ B, N, C = x.shape H, W = size assert N == 1 + H * W cls_token = x[:, :1, :] img_tokens = x[:, 1:, :] img_tokens = img_tokens.transpose(1, 2).reshape(B, C, H, W) img_tokens = F.interpolate(img_tokens, scale_factor=scale_factor, mode='bilinear') img_tokens = img_tokens.reshape(B, C, -1).transpose(1, 2) out = torch.cat((cls_token, img_tokens), dim=1) return out def forward(self, x1, x2, x3, x4, sizes): _, (H2, W2), (H3, W3), (H4, W4) = sizes # Conv-Attention. x2 = self.cpes[1](x2, size=(H2, W2)) # Note: x1 is ignored. x3 = self.cpes[2](x3, size=(H3, W3)) x4 = self.cpes[3](x4, size=(H4, W4)) cur2 = self.norm12(x2) cur3 = self.norm13(x3) cur4 = self.norm14(x4) cur2 = self.factoratt_crpe2(cur2, size=(H2,W2)) cur3 = self.factoratt_crpe3(cur3, size=(H3,W3)) cur4 = self.factoratt_crpe4(cur4, size=(H4,W4)) upsample3_2 = self.upsample(cur3, factor=2, size=(H3,W3)) upsample4_3 = self.upsample(cur4, factor=2, size=(H4,W4)) upsample4_2 = self.upsample(cur4, factor=4, size=(H4,W4)) downsample2_3 = self.downsample(cur2, factor=2, size=(H2,W2)) downsample3_4 = self.downsample(cur3, factor=2, size=(H3,W3)) downsample2_4 = self.downsample(cur2, factor=4, size=(H2,W2)) cur2 = cur2 + upsample3_2 + upsample4_2 cur3 = cur3 + upsample4_3 + downsample2_3 cur4 = cur4 + downsample3_4 + downsample2_4 x2 = x2 + self.drop_path(cur2) x3 = x3 + self.drop_path(cur3) x4 = x4 + self.drop_path(cur4) # MLP. cur2 = self.norm22(x2) cur3 = self.norm23(x3) cur4 = self.norm24(x4) cur2 = self.mlp2(cur2) cur3 = self.mlp3(cur3) cur4 = self.mlp4(cur4) x2 = x2 + self.drop_path(cur2) x3 = x3 + self.drop_path(cur3) x4 = x4 + self.drop_path(cur4) return x1, x2, x3, x4 class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \ f"img_size {img_size} should be divided by patch_size {patch_size}." self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1] # Note: self.H, self.W and self.num_patches are not used self.num_patches = self.H * self.W # since the image size may change on the fly. self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) self.norm = nn.LayerNorm(embed_dim) def forward(self, x): _, _, H, W = x.shape out_H, out_W = H // self.patch_size[0], W // self.patch_size[1] x = self.proj(x).flatten(2).transpose(1, 2) out = self.norm(x) return out, (out_H, out_W) class CoaT(nn.Module): """ CoaT class. """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[0, 0, 0, 0], serial_depths=[0, 0, 0, 0], parallel_depth=0, num_heads=0, mlp_ratios=[0, 0, 0, 0], qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6), return_interm_layers=False, out_features=None, crpe_window={3:2, 5:3, 7:3}, **kwargs): super().__init__() self.return_interm_layers = return_interm_layers self.out_features = out_features self.num_classes = num_classes # Patch embeddings. self.patch_embed1 = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dims[0]) self.patch_embed2 = PatchEmbed(img_size=img_size // 4, patch_size=2, in_chans=embed_dims[0], embed_dim=embed_dims[1]) self.patch_embed3 = PatchEmbed(img_size=img_size // 8, patch_size=2, in_chans=embed_dims[1], embed_dim=embed_dims[2]) self.patch_embed4 = PatchEmbed(img_size=img_size // 16, patch_size=2, in_chans=embed_dims[2], embed_dim=embed_dims[3]) # Class tokens. self.cls_token1 = nn.Parameter(torch.zeros(1, 1, embed_dims[0])) self.cls_token2 = nn.Parameter(torch.zeros(1, 1, embed_dims[1])) self.cls_token3 = nn.Parameter(torch.zeros(1, 1, embed_dims[2])) self.cls_token4 = nn.Parameter(torch.zeros(1, 1, embed_dims[3])) # Convolutional position encodings. self.cpe1 = ConvPosEnc(dim=embed_dims[0], k=3) self.cpe2 = ConvPosEnc(dim=embed_dims[1], k=3) self.cpe3 = ConvPosEnc(dim=embed_dims[2], k=3) self.cpe4 = ConvPosEnc(dim=embed_dims[3], k=3) # Convolutional relative position encodings. self.crpe1 = ConvRelPosEnc(Ch=embed_dims[0] // num_heads, h=num_heads, window=crpe_window) self.crpe2 = ConvRelPosEnc(Ch=embed_dims[1] // num_heads, h=num_heads, window=crpe_window) self.crpe3 = ConvRelPosEnc(Ch=embed_dims[2] // num_heads, h=num_heads, window=crpe_window) self.crpe4 = ConvRelPosEnc(Ch=embed_dims[3] // num_heads, h=num_heads, window=crpe_window) # Disable stochastic depth. dpr = drop_path_rate assert dpr == 0.0 # Serial blocks 1. self.serial_blocks1 = nn.ModuleList([ SerialBlock( dim=embed_dims[0], num_heads=num_heads, mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, shared_cpe=self.cpe1, shared_crpe=self.crpe1 ) for _ in range(serial_depths[0])] ) # Serial blocks 2. self.serial_blocks2 = nn.ModuleList([ SerialBlock( dim=embed_dims[1], num_heads=num_heads, mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, shared_cpe=self.cpe2, shared_crpe=self.crpe2 ) for _ in range(serial_depths[1])] ) # Serial blocks 3. self.serial_blocks3 = nn.ModuleList([ SerialBlock( dim=embed_dims[2], num_heads=num_heads, mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, shared_cpe=self.cpe3, shared_crpe=self.crpe3 ) for _ in range(serial_depths[2])] ) # Serial blocks 4. self.serial_blocks4 = nn.ModuleList([ SerialBlock( dim=embed_dims[3], num_heads=num_heads, mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, shared_cpe=self.cpe4, shared_crpe=self.crpe4 ) for _ in range(serial_depths[3])] ) # Parallel blocks. self.parallel_depth = parallel_depth if self.parallel_depth > 0: self.parallel_blocks = nn.ModuleList([ ParallelBlock( dims=embed_dims, num_heads=num_heads, mlp_ratios=mlp_ratios, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, shared_cpes=[self.cpe1, self.cpe2, self.cpe3, self.cpe4], shared_crpes=[self.crpe1, self.crpe2, self.crpe3, self.crpe4] ) for _ in range(parallel_depth)] ) # Classification head(s). if not self.return_interm_layers: self.norm1 = norm_layer(embed_dims[0]) self.norm2 = norm_layer(embed_dims[1]) self.norm3 = norm_layer(embed_dims[2]) self.norm4 = norm_layer(embed_dims[3]) if self.parallel_depth > 0: # CoaT series: Aggregate features of last three scales for classification. assert embed_dims[1] == embed_dims[2] == embed_dims[3] self.aggregate = torch.nn.Conv1d(in_channels=3, out_channels=1, kernel_size=1) self.head = nn.Linear(embed_dims[3], num_classes) else: self.head = nn.Linear(embed_dims[3], num_classes) # CoaT-Lite series: Use feature of last scale for classification. # Initialize weights. trunc_normal_(self.cls_token1, std=.02) trunc_normal_(self.cls_token2, std=.02) trunc_normal_(self.cls_token3, std=.02) trunc_normal_(self.cls_token4, std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'cls_token1', 'cls_token2', 'cls_token3', 'cls_token4'} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def insert_cls(self, x, cls_token): """ Insert CLS token. """ cls_tokens = cls_token.expand(x.shape[0], -1, -1) x = torch.cat((cls_tokens, x), dim=1) return x def remove_cls(self, x): """ Remove CLS token. """ return x[:, 1:, :] def forward_features(self, x0): B = x0.shape[0] # Serial blocks 1. x1, (H1, W1) = self.patch_embed1(x0) x1 = self.insert_cls(x1, self.cls_token1) for blk in self.serial_blocks1: x1 = blk(x1, size=(H1, W1)) x1_nocls = self.remove_cls(x1) x1_nocls = x1_nocls.reshape(B, H1, W1, -1).permute(0, 3, 1, 2).contiguous() # Serial blocks 2. x2, (H2, W2) = self.patch_embed2(x1_nocls) x2 = self.insert_cls(x2, self.cls_token2) for blk in self.serial_blocks2: x2 = blk(x2, size=(H2, W2)) x2_nocls = self.remove_cls(x2) x2_nocls = x2_nocls.reshape(B, H2, W2, -1).permute(0, 3, 1, 2).contiguous() # Serial blocks 3. x3, (H3, W3) = self.patch_embed3(x2_nocls) x3 = self.insert_cls(x3, self.cls_token3) for blk in self.serial_blocks3: x3 = blk(x3, size=(H3, W3)) x3_nocls = self.remove_cls(x3) x3_nocls = x3_nocls.reshape(B, H3, W3, -1).permute(0, 3, 1, 2).contiguous() # Serial blocks 4. x4, (H4, W4) = self.patch_embed4(x3_nocls) x4 = self.insert_cls(x4, self.cls_token4) for blk in self.serial_blocks4: x4 = blk(x4, size=(H4, W4)) x4_nocls = self.remove_cls(x4) x4_nocls = x4_nocls.reshape(B, H4, W4, -1).permute(0, 3, 1, 2).contiguous() # Only serial blocks: Early return. if self.parallel_depth == 0: if self.return_interm_layers: # Return intermediate features for down-stream tasks (e.g. Deformable DETR and Detectron2). feat_out = {} if 'x1_nocls' in self.out_features: feat_out['x1_nocls'] = x1_nocls if 'x2_nocls' in self.out_features: feat_out['x2_nocls'] = x2_nocls if 'x3_nocls' in self.out_features: feat_out['x3_nocls'] = x3_nocls if 'x4_nocls' in self.out_features: feat_out['x4_nocls'] = x4_nocls return feat_out else: # Return features for classification. x4 = self.norm4(x4) x4_cls = x4[:, 0] return x4_cls # Parallel blocks. for blk in self.parallel_blocks: x1, x2, x3, x4 = blk(x1, x2, x3, x4, sizes=[(H1, W1), (H2, W2), (H3, W3), (H4, W4)]) if self.return_interm_layers: # Return intermediate features for down-stream tasks (e.g. Deformable DETR and Detectron2). feat_out = {} if 'x1_nocls' in self.out_features: x1_nocls = self.remove_cls(x1) x1_nocls = x1_nocls.reshape(B, H1, W1, -1).permute(0, 3, 1, 2).contiguous() feat_out['x1_nocls'] = x1_nocls if 'x2_nocls' in self.out_features: x2_nocls = self.remove_cls(x2) x2_nocls = x2_nocls.reshape(B, H2, W2, -1).permute(0, 3, 1, 2).contiguous() feat_out['x2_nocls'] = x2_nocls if 'x3_nocls' in self.out_features: x3_nocls = self.remove_cls(x3) x3_nocls = x3_nocls.reshape(B, H3, W3, -1).permute(0, 3, 1, 2).contiguous() feat_out['x3_nocls'] = x3_nocls if 'x4_nocls' in self.out_features: x4_nocls = self.remove_cls(x4) x4_nocls = x4_nocls.reshape(B, H4, W4, -1).permute(0, 3, 1, 2).contiguous() feat_out['x4_nocls'] = x4_nocls return feat_out else: x2 = self.norm2(x2) x3 = self.norm3(x3) x4 = self.norm4(x4) x2_cls = x2[:, :1] # Shape: [B, 1, C]. x3_cls = x3[:, :1] x4_cls = x4[:, :1] merged_cls = torch.cat((x2_cls, x3_cls, x4_cls), dim=1) # Shape: [B, 3, C]. merged_cls = self.aggregate(merged_cls).squeeze(dim=1) # Shape: [B, C]. return merged_cls def forward(self, x): if self.return_interm_layers: # Return intermediate features (for down-stream tasks). return self.forward_features(x) else: # Return features for classification. x = self.forward_features(x) x = self.head(x) return x # CoaT. @register_model def coat_tiny(**kwargs): model = CoaT(patch_size=4, embed_dims=[152, 152, 152, 152], serial_depths=[2, 2, 2, 2], parallel_depth=6, num_heads=8, mlp_ratios=[4, 4, 4, 4], **kwargs) model.default_cfg = _cfg_coat() return model @register_model def coat_mini(**kwargs): model = CoaT(patch_size=4, embed_dims=[152, 216, 216, 216], serial_depths=[2, 2, 2, 2], parallel_depth=6, num_heads=8, mlp_ratios=[4, 4, 4, 4], **kwargs) model.default_cfg = _cfg_coat() return model # CoaT-Lite. @register_model def coat_lite_tiny(**kwargs): model = CoaT(patch_size=4, embed_dims=[64, 128, 256, 320], serial_depths=[2, 2, 2, 2], parallel_depth=0, num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs) model.default_cfg = _cfg_coat() return model @register_model def coat_lite_mini(**kwargs): model = CoaT(patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[2, 2, 2, 2], parallel_depth=0, num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs) model.default_cfg = _cfg_coat() return model @register_model def coat_lite_small(**kwargs): model = CoaT(patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[3, 4, 6, 3], parallel_depth=0, num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs) model.default_cfg = _cfg_coat() return model