""" Padding Helpers Hacked together by Ross Wightman """ import math from typing import List from .helpers import ntuple import torch.nn.functional as F # Calculate symmetric padding for a convolution def get_padding(kernel_size: int, stride: int = 1, dilation: int = 1, **_) -> int: if isinstance(kernel_size, (list, tuple)): stride = ntuple(len(kernel_size))(stride) dilation = ntuple(len(kernel_size))(dilation) return [get_padding(k, s, d) for k, s, d in zip(kernel_size, stride, dilation)] padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2 return padding # Calculate asymmetric TensorFlow-like 'SAME' padding for a convolution def get_same_padding(x: int, k: int, s: int, d: int): return max((math.ceil(x / s) - 1) * s + (k - 1) * d + 1 - x, 0) # Can SAME padding for given args be done statically? def is_static_pad(kernel_size: int, stride: int = 1, dilation: int = 1, **_): return stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0 # Dynamically pad input x with 'SAME' padding for conv with specified args def pad_same(x, k: List[int], s: List[int], d: List[int] = (1, 1), shift: int = 0): ih, iw = x.size()[-2:] pad_h, pad_w = get_same_padding(ih, k[0], s[0], d[0]), get_same_padding(iw, k[1], s[1], d[1]) if pad_h > 0 or pad_w > 0: if shift == 0: pl = [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2] # ul elif shift == 1: pl = [pad_w - pad_w // 2, pad_w // 2, pad_h - pad_h // 2, pad_h // 2] # lr elif shift == 2: pl = [pad_w - pad_w // 2, pad_w // 2, pad_h // 2, pad_h - pad_h // 2] # ur else: pl = [pad_w // 2, pad_w - pad_w // 2, pad_h - pad_h // 2, pad_h // 2] # ll x = F.pad(x, pl) return x