"""Pytorch impl of MxNet Gluon ResNet/(SE)ResNeXt variants This file evolved from https://github.com/pytorch/vision 'resnet.py' with (SE)-ResNeXt additions and ports of Gluon variations (https://github.com/dmlc/gluon-cv/blob/master/gluoncv/model_zoo/resnet.py) by Ross Wightman """ import math import torch import torch.nn as nn import torch.nn.functional as F from .registry import register_model from .helpers import load_pretrained from .layers import SqueezeExcite from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from .resnet import ResNet, Bottleneck, BasicBlock def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv1', 'classifier': 'fc', **kwargs } default_cfgs = { 'gluon_resnet18_v1b': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet18_v1b-0757602b.pth'), 'gluon_resnet34_v1b': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet34_v1b-c6d82d59.pth'), 'gluon_resnet50_v1b': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1b-0ebe02e2.pth'), 'gluon_resnet101_v1b': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1b-3b017079.pth'), 'gluon_resnet152_v1b': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1b-c1edb0dd.pth'), 'gluon_resnet50_v1c': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1c-48092f55.pth'), 'gluon_resnet101_v1c': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1c-1f26822a.pth'), 'gluon_resnet152_v1c': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1c-a3bb0b98.pth'), 'gluon_resnet50_v1d': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1d-818a1b1b.pth'), 'gluon_resnet101_v1d': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1d-0f9c8644.pth'), 'gluon_resnet152_v1d': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1d-bd354e12.pth'), 'gluon_resnet50_v1e': _cfg(url=''), 'gluon_resnet101_v1e': _cfg(url=''), 'gluon_resnet152_v1e': _cfg(url=''), 'gluon_resnet50_v1s': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1s-1762acc0.pth'), 'gluon_resnet101_v1s': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1s-60fe0cc1.pth'), 'gluon_resnet152_v1s': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1s-dcc41b81.pth'), 'gluon_resnext50_32x4d': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnext50_32x4d-e6a097c1.pth'), 'gluon_resnext101_32x4d': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnext101_32x4d-b253c8c4.pth'), 'gluon_resnext101_64x4d': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnext101_64x4d-f9a8e184.pth'), 'gluon_seresnext50_32x4d': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_seresnext50_32x4d-90cf2d6e.pth'), 'gluon_seresnext101_32x4d': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_seresnext101_32x4d-cf52900d.pth'), 'gluon_seresnext101_64x4d': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_seresnext101_64x4d-f9926f93.pth'), 'gluon_senet154': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_senet154-70a1a3c0.pth'), } @register_model def gluon_resnet18_v1b(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNet-18 model. """ default_cfg = default_cfgs['gluon_resnet18_v1b'] model = ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_resnet34_v1b(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNet-34 model. """ default_cfg = default_cfgs['gluon_resnet34_v1b'] model = ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_resnet50_v1b(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNet-50 model. """ default_cfg = default_cfgs['gluon_resnet50_v1b'] model = ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_resnet101_v1b(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNet-101 model. """ default_cfg = default_cfgs['gluon_resnet101_v1b'] model = ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_resnet152_v1b(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNet-152 model. """ default_cfg = default_cfgs['gluon_resnet152_v1b'] model = ResNet(Bottleneck, [3, 8, 36, 3], num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_resnet50_v1c(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNet-50 model. """ default_cfg = default_cfgs['gluon_resnet50_v1c'] model = ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, in_chans=in_chans, stem_width=32, stem_type='deep', **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_resnet101_v1c(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNet-101 model. """ default_cfg = default_cfgs['gluon_resnet101_v1c'] model = ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, in_chans=in_chans, stem_width=32, stem_type='deep', **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_resnet152_v1c(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNet-152 model. """ default_cfg = default_cfgs['gluon_resnet152_v1c'] model = ResNet(Bottleneck, [3, 8, 36, 3], num_classes=num_classes, in_chans=in_chans, stem_width=32, stem_type='deep', **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_resnet50_v1d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNet-50 model. """ default_cfg = default_cfgs['gluon_resnet50_v1d'] model = ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, in_chans=in_chans, stem_width=32, stem_type='deep', avg_down=True, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_resnet101_v1d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNet-101 model. """ default_cfg = default_cfgs['gluon_resnet101_v1d'] model = ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, in_chans=in_chans, stem_width=32, stem_type='deep', avg_down=True, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_resnet152_v1d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNet-152 model. """ default_cfg = default_cfgs['gluon_resnet152_v1d'] model = ResNet(Bottleneck, [3, 8, 36, 3], num_classes=num_classes, in_chans=in_chans, stem_width=32, stem_type='deep', avg_down=True, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_resnet50_v1e(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNet-50-V1e model. No pretrained weights for any 'e' variants """ default_cfg = default_cfgs['gluon_resnet50_v1e'] model = ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, in_chans=in_chans, stem_width=64, stem_type='deep', avg_down=True, **kwargs) model.default_cfg = default_cfg #if pretrained: # load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_resnet101_v1e(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNet-101 model. """ default_cfg = default_cfgs['gluon_resnet101_v1e'] model = ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, in_chans=in_chans, stem_width=64, stem_type='deep', avg_down=True, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_resnet152_v1e(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNet-152 model. """ default_cfg = default_cfgs['gluon_resnet152_v1e'] model = ResNet(Bottleneck, [3, 8, 36, 3], num_classes=num_classes, in_chans=in_chans, stem_width=64, stem_type='deep', avg_down=True, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_resnet50_v1s(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNet-50 model. """ default_cfg = default_cfgs['gluon_resnet50_v1s'] model = ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, in_chans=in_chans, stem_width=64, stem_type='deep', **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_resnet101_v1s(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNet-101 model. """ default_cfg = default_cfgs['gluon_resnet101_v1s'] model = ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, in_chans=in_chans, stem_width=64, stem_type='deep', **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_resnet152_v1s(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNet-152 model. """ default_cfg = default_cfgs['gluon_resnet152_v1s'] model = ResNet(Bottleneck, [3, 8, 36, 3], num_classes=num_classes, in_chans=in_chans, stem_width=64, stem_type='deep', **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_resnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNeXt50-32x4d model. """ default_cfg = default_cfgs['gluon_resnext50_32x4d'] model = ResNet( Bottleneck, [3, 4, 6, 3], cardinality=32, base_width=4, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_resnext101_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNeXt-101 model. """ default_cfg = default_cfgs['gluon_resnext101_32x4d'] model = ResNet( Bottleneck, [3, 4, 23, 3], cardinality=32, base_width=4, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_resnext101_64x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNeXt-101 model. """ default_cfg = default_cfgs['gluon_resnext101_64x4d'] model = ResNet( Bottleneck, [3, 4, 23, 3], cardinality=64, base_width=4, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_seresnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a SEResNeXt50-32x4d model. """ default_cfg = default_cfgs['gluon_seresnext50_32x4d'] model = ResNet( Bottleneck, [3, 4, 6, 3], cardinality=32, base_width=4, num_classes=num_classes, in_chans=in_chans, block_args=dict(attn_layer=SqueezeExcite), **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_seresnext101_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a SEResNeXt-101-32x4d model. """ default_cfg = default_cfgs['gluon_seresnext101_32x4d'] model = ResNet( Bottleneck, [3, 4, 23, 3], cardinality=32, base_width=4, num_classes=num_classes, in_chans=in_chans, block_args=dict(attn_layer=SqueezeExcite), **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_seresnext101_64x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a SEResNeXt-101-64x4d model. """ default_cfg = default_cfgs['gluon_seresnext101_64x4d'] block_args = dict(attn_layer=SqueezeExcite) model = ResNet( Bottleneck, [3, 4, 23, 3], cardinality=64, base_width=4, num_classes=num_classes, in_chans=in_chans, block_args=block_args, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def gluon_senet154(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs an SENet-154 model. """ default_cfg = default_cfgs['gluon_senet154'] block_args = dict(attn_layer=SqueezeExcite) model = ResNet( Bottleneck, [3, 8, 36, 3], cardinality=64, base_width=4, stem_type='deep', down_kernel_size=3, block_reduce_first=2, num_classes=num_classes, in_chans=in_chans, block_args=block_args, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model