"""VGG Adapted from https://github.com/pytorch/vision 'vgg.py' (BSD-3-Clause) with a few changes for timm functionality. Copyright 2021 Ross Wightman """ from typing import Union, List, Dict, Any, cast import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import ClassifierHead from ._builder import build_model_with_cfg from ._features_fx import register_notrace_module from ._registry import register_model __all__ = ['VGG'] def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'features.0', 'classifier': 'head.fc', **kwargs } default_cfgs = { 'vgg11': _cfg(url='https://download.pytorch.org/models/vgg11-bbd30ac9.pth'), 'vgg13': _cfg(url='https://download.pytorch.org/models/vgg13-c768596a.pth'), 'vgg16': _cfg(url='https://download.pytorch.org/models/vgg16-397923af.pth'), 'vgg19': _cfg(url='https://download.pytorch.org/models/vgg19-dcbb9e9d.pth'), 'vgg11_bn': _cfg(url='https://download.pytorch.org/models/vgg11_bn-6002323d.pth'), 'vgg13_bn': _cfg(url='https://download.pytorch.org/models/vgg13_bn-abd245e5.pth'), 'vgg16_bn': _cfg(url='https://download.pytorch.org/models/vgg16_bn-6c64b313.pth'), 'vgg19_bn': _cfg(url='https://download.pytorch.org/models/vgg19_bn-c79401a0.pth'), } cfgs: Dict[str, List[Union[str, int]]] = { 'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } @register_notrace_module # reason: FX can't symbolically trace control flow in forward method class ConvMlp(nn.Module): def __init__( self, in_features=512, out_features=4096, kernel_size=7, mlp_ratio=1.0, drop_rate: float = 0.2, act_layer: nn.Module = None, conv_layer: nn.Module = None): super(ConvMlp, self).__init__() self.input_kernel_size = kernel_size mid_features = int(out_features * mlp_ratio) self.fc1 = conv_layer(in_features, mid_features, kernel_size, bias=True) self.act1 = act_layer(True) self.drop = nn.Dropout(drop_rate) self.fc2 = conv_layer(mid_features, out_features, 1, bias=True) self.act2 = act_layer(True) def forward(self, x): if x.shape[-2] < self.input_kernel_size or x.shape[-1] < self.input_kernel_size: # keep the input size >= 7x7 output_size = (max(self.input_kernel_size, x.shape[-2]), max(self.input_kernel_size, x.shape[-1])) x = F.adaptive_avg_pool2d(x, output_size) x = self.fc1(x) x = self.act1(x) x = self.drop(x) x = self.fc2(x) x = self.act2(x) return x class VGG(nn.Module): def __init__( self, cfg: List[Any], num_classes: int = 1000, in_chans: int = 3, output_stride: int = 32, mlp_ratio: float = 1.0, act_layer: nn.Module = nn.ReLU, conv_layer: nn.Module = nn.Conv2d, norm_layer: nn.Module = None, global_pool: str = 'avg', drop_rate: float = 0., ) -> None: super(VGG, self).__init__() assert output_stride == 32 self.num_classes = num_classes self.num_features = 4096 self.drop_rate = drop_rate self.grad_checkpointing = False self.use_norm = norm_layer is not None self.feature_info = [] prev_chs = in_chans net_stride = 1 pool_layer = nn.MaxPool2d layers: List[nn.Module] = [] for v in cfg: last_idx = len(layers) - 1 if v == 'M': self.feature_info.append(dict(num_chs=prev_chs, reduction=net_stride, module=f'features.{last_idx}')) layers += [pool_layer(kernel_size=2, stride=2)] net_stride *= 2 else: v = cast(int, v) conv2d = conv_layer(prev_chs, v, kernel_size=3, padding=1) if norm_layer is not None: layers += [conv2d, norm_layer(v), act_layer(inplace=True)] else: layers += [conv2d, act_layer(inplace=True)] prev_chs = v self.features = nn.Sequential(*layers) self.feature_info.append(dict(num_chs=prev_chs, reduction=net_stride, module=f'features.{len(layers) - 1}')) self.pre_logits = ConvMlp( prev_chs, self.num_features, 7, mlp_ratio=mlp_ratio, drop_rate=drop_rate, act_layer=act_layer, conv_layer=conv_layer) self.head = ClassifierHead( self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) self._initialize_weights() @torch.jit.ignore def group_matcher(self, coarse=False): # this treats BN layers as separate groups for bn variants, a lot of effort to fix that return dict(stem=r'^features\.0', blocks=r'^features\.(\d+)') @torch.jit.ignore def set_grad_checkpointing(self, enable=True): assert not enable, 'gradient checkpointing not supported' @torch.jit.ignore def get_classifier(self): return self.head.fc def reset_classifier(self, num_classes, global_pool='avg'): self.num_classes = num_classes self.head = ClassifierHead( self.num_features, self.num_classes, pool_type=global_pool, drop_rate=self.drop_rate) def forward_features(self, x: torch.Tensor) -> torch.Tensor: x = self.features(x) return x def forward_head(self, x: torch.Tensor, pre_logits: bool = False): x = self.pre_logits(x) return x if pre_logits else self.head(x) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.forward_features(x) x = self.forward_head(x) return x def _initialize_weights(self) -> None: for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) def _filter_fn(state_dict): """ convert patch embedding weight from manual patchify + linear proj to conv""" out_dict = {} for k, v in state_dict.items(): k_r = k k_r = k_r.replace('classifier.0', 'pre_logits.fc1') k_r = k_r.replace('classifier.3', 'pre_logits.fc2') k_r = k_r.replace('classifier.6', 'head.fc') if 'classifier.0.weight' in k: v = v.reshape(-1, 512, 7, 7) if 'classifier.3.weight' in k: v = v.reshape(-1, 4096, 1, 1) out_dict[k_r] = v return out_dict def _create_vgg(variant: str, pretrained: bool, **kwargs: Any) -> VGG: cfg = variant.split('_')[0] # NOTE: VGG is one of few models with stride==1 features w/ 6 out_indices [0..5] out_indices = kwargs.pop('out_indices', (0, 1, 2, 3, 4, 5)) model = build_model_with_cfg( VGG, variant, pretrained, model_cfg=cfgs[cfg], feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), pretrained_filter_fn=_filter_fn, **kwargs) return model @register_model def vgg11(pretrained: bool = False, **kwargs: Any) -> VGG: r"""VGG 11-layer model (configuration "A") from `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ """ model_args = dict(**kwargs) return _create_vgg('vgg11', pretrained=pretrained, **model_args) @register_model def vgg11_bn(pretrained: bool = False, **kwargs: Any) -> VGG: r"""VGG 11-layer model (configuration "A") with batch normalization `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ """ model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs) return _create_vgg('vgg11_bn', pretrained=pretrained, **model_args) @register_model def vgg13(pretrained: bool = False, **kwargs: Any) -> VGG: r"""VGG 13-layer model (configuration "B") `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ """ model_args = dict(**kwargs) return _create_vgg('vgg13', pretrained=pretrained, **model_args) @register_model def vgg13_bn(pretrained: bool = False, **kwargs: Any) -> VGG: r"""VGG 13-layer model (configuration "B") with batch normalization `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ """ model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs) return _create_vgg('vgg13_bn', pretrained=pretrained, **model_args) @register_model def vgg16(pretrained: bool = False, **kwargs: Any) -> VGG: r"""VGG 16-layer model (configuration "D") `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ """ model_args = dict(**kwargs) return _create_vgg('vgg16', pretrained=pretrained, **model_args) @register_model def vgg16_bn(pretrained: bool = False, **kwargs: Any) -> VGG: r"""VGG 16-layer model (configuration "D") with batch normalization `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ """ model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs) return _create_vgg('vgg16_bn', pretrained=pretrained, **model_args) @register_model def vgg19(pretrained: bool = False, **kwargs: Any) -> VGG: r"""VGG 19-layer model (configuration "E") `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ """ model_args = dict(**kwargs) return _create_vgg('vgg19', pretrained=pretrained, **model_args) @register_model def vgg19_bn(pretrained: bool = False, **kwargs: Any) -> VGG: r"""VGG 19-layer model (configuration 'E') with batch normalization `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ """ model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs) return _create_vgg('vgg19_bn', pretrained=pretrained, **model_args)