|
|
|
@ -0,0 +1,637 @@
|
|
|
|
|
""" FocalNet
|
|
|
|
|
|
|
|
|
|
As described in `Focal Modulation Networks` - https://arxiv.org/abs/2203.11926
|
|
|
|
|
|
|
|
|
|
Significant modifications and refactoring from the original impl at https://github.com/microsoft/FocalNet
|
|
|
|
|
|
|
|
|
|
This impl is/has:
|
|
|
|
|
* fully convolutional, NCHW tensor layout throughout, seemed to have minimal performance impact but more flexible
|
|
|
|
|
* re-ordered downsample / layer so that striding always at beginning of layer (stage)
|
|
|
|
|
* no input size constraints or input resolution/H/W tracking through the model
|
|
|
|
|
* torchscript fixed and a number of quirks cleaned up
|
|
|
|
|
* feature extraction support via `features_only=True`
|
|
|
|
|
"""
|
|
|
|
|
# --------------------------------------------------------
|
|
|
|
|
# FocalNets -- Focal Modulation Networks
|
|
|
|
|
# Copyright (c) 2022 Microsoft
|
|
|
|
|
# Licensed under The MIT License [see LICENSE for details]
|
|
|
|
|
# Written by Jianwei Yang (jianwyan@microsoft.com)
|
|
|
|
|
# --------------------------------------------------------
|
|
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
import torch.nn as nn
|
|
|
|
|
import torch.utils.checkpoint as checkpoint
|
|
|
|
|
|
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
|
from timm.layers import Mlp, DropPath, LayerNorm2d, trunc_normal_, ClassifierHead, NormMlpClassifierHead
|
|
|
|
|
from ._builder import build_model_with_cfg
|
|
|
|
|
from ._manipulate import named_apply
|
|
|
|
|
from ._registry import register_model
|
|
|
|
|
|
|
|
|
|
__all__ = ['FocalNet']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class FocalModulation(nn.Module):
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
dim,
|
|
|
|
|
focal_window,
|
|
|
|
|
focal_level,
|
|
|
|
|
focal_factor=2,
|
|
|
|
|
bias=True,
|
|
|
|
|
use_post_norm=False,
|
|
|
|
|
normalize_modulator=False,
|
|
|
|
|
proj_drop=0.,
|
|
|
|
|
norm_layer=LayerNorm2d,
|
|
|
|
|
):
|
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
|
|
self.dim = dim
|
|
|
|
|
self.focal_window = focal_window
|
|
|
|
|
self.focal_level = focal_level
|
|
|
|
|
self.focal_factor = focal_factor
|
|
|
|
|
self.use_post_norm = use_post_norm
|
|
|
|
|
self.normalize_modulator = normalize_modulator
|
|
|
|
|
self.input_split = [dim, dim, self.focal_level + 1]
|
|
|
|
|
|
|
|
|
|
self.f = nn.Conv2d(dim, 2 * dim + (self.focal_level + 1), kernel_size=1, bias=bias)
|
|
|
|
|
self.h = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)
|
|
|
|
|
|
|
|
|
|
self.act = nn.GELU()
|
|
|
|
|
self.proj = nn.Conv2d(dim, dim, kernel_size=1)
|
|
|
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
|
self.focal_layers = nn.ModuleList()
|
|
|
|
|
|
|
|
|
|
self.kernel_sizes = []
|
|
|
|
|
for k in range(self.focal_level):
|
|
|
|
|
kernel_size = self.focal_factor * k + self.focal_window
|
|
|
|
|
self.focal_layers.append(nn.Sequential(
|
|
|
|
|
nn.Conv2d(dim, dim, kernel_size=kernel_size, groups=dim, padding=kernel_size // 2, bias=False),
|
|
|
|
|
nn.GELU(),
|
|
|
|
|
))
|
|
|
|
|
self.kernel_sizes.append(kernel_size)
|
|
|
|
|
self.norm = norm_layer(dim) if self.use_post_norm else nn.Identity()
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
"""
|
|
|
|
|
Args:
|
|
|
|
|
x: input features with shape of (B, H, W, C)
|
|
|
|
|
"""
|
|
|
|
|
C = x.shape[1]
|
|
|
|
|
|
|
|
|
|
# pre linear projection
|
|
|
|
|
x = self.f(x)
|
|
|
|
|
q, ctx, gates = torch.split(x, self.input_split, 1)
|
|
|
|
|
|
|
|
|
|
# context aggreation
|
|
|
|
|
ctx_all = 0
|
|
|
|
|
for l, focal_layer in enumerate(self.focal_layers):
|
|
|
|
|
ctx = focal_layer(ctx)
|
|
|
|
|
ctx_all = ctx_all + ctx * gates[:, l:l + 1]
|
|
|
|
|
ctx_global = self.act(ctx.mean((2, 3), keepdim=True))
|
|
|
|
|
ctx_all = ctx_all + ctx_global * gates[:, self.focal_level:]
|
|
|
|
|
|
|
|
|
|
# normalize context
|
|
|
|
|
if self.normalize_modulator:
|
|
|
|
|
ctx_all = ctx_all / (self.focal_level + 1)
|
|
|
|
|
|
|
|
|
|
# focal modulation
|
|
|
|
|
x_out = q * self.h(ctx_all)
|
|
|
|
|
x_out = self.norm(x_out)
|
|
|
|
|
|
|
|
|
|
# post linear projection
|
|
|
|
|
x_out = self.proj(x_out)
|
|
|
|
|
x_out = self.proj_drop(x_out)
|
|
|
|
|
return x_out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LayerScale2d(nn.Module):
|
|
|
|
|
def __init__(self, dim, init_values=1e-5, inplace=False):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.inplace = inplace
|
|
|
|
|
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
gamma = self.gamma.view(1, -1, 1, 1)
|
|
|
|
|
return x.mul_(gamma) if self.inplace else x * gamma
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class FocalNetBlock(nn.Module):
|
|
|
|
|
r""" Focal Modulation Network Block.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
dim (int): Number of input channels.
|
|
|
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
|
|
|
|
proj_drop (float, optional): Dropout rate. Default: 0.0
|
|
|
|
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
|
|
|
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
|
|
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
|
|
|
|
focal_level (int): Number of focal levels.
|
|
|
|
|
focal_window (int): Focal window size at first focal level
|
|
|
|
|
layerscale_value (float): Initial layerscale value
|
|
|
|
|
use_post_norm (bool): Whether to use layernorm after modulation
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
dim,
|
|
|
|
|
mlp_ratio=4.,
|
|
|
|
|
focal_level=1,
|
|
|
|
|
focal_window=3,
|
|
|
|
|
use_post_norm=False,
|
|
|
|
|
use_post_norm_in_modulation=False,
|
|
|
|
|
normalize_modulator=False,
|
|
|
|
|
layerscale_value=1e-4,
|
|
|
|
|
proj_drop=0.,
|
|
|
|
|
drop_path=0.,
|
|
|
|
|
act_layer=nn.GELU,
|
|
|
|
|
norm_layer=LayerNorm2d,
|
|
|
|
|
):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.dim = dim
|
|
|
|
|
self.mlp_ratio = mlp_ratio
|
|
|
|
|
|
|
|
|
|
self.focal_window = focal_window
|
|
|
|
|
self.focal_level = focal_level
|
|
|
|
|
self.use_post_norm = use_post_norm
|
|
|
|
|
|
|
|
|
|
self.norm1 = norm_layer(dim) if not use_post_norm else nn.Identity()
|
|
|
|
|
self.modulation = FocalModulation(
|
|
|
|
|
dim,
|
|
|
|
|
focal_window=focal_window,
|
|
|
|
|
focal_level=self.focal_level,
|
|
|
|
|
use_post_norm=use_post_norm_in_modulation,
|
|
|
|
|
normalize_modulator=normalize_modulator,
|
|
|
|
|
proj_drop=proj_drop,
|
|
|
|
|
norm_layer=norm_layer,
|
|
|
|
|
)
|
|
|
|
|
self.norm1_post = norm_layer(dim) if use_post_norm else nn.Identity()
|
|
|
|
|
self.ls1 = LayerScale2d(dim, layerscale_value) if layerscale_value is not None else nn.Identity()
|
|
|
|
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
|
|
|
|
self.norm2 = norm_layer(dim) if not use_post_norm else nn.Identity()
|
|
|
|
|
self.mlp = Mlp(
|
|
|
|
|
in_features=dim,
|
|
|
|
|
hidden_features=int(dim * mlp_ratio),
|
|
|
|
|
act_layer=act_layer,
|
|
|
|
|
drop=proj_drop,
|
|
|
|
|
use_conv=True,
|
|
|
|
|
)
|
|
|
|
|
self.norm2_post = norm_layer(dim) if use_post_norm else nn.Identity()
|
|
|
|
|
self.ls2 = LayerScale2d(dim, layerscale_value) if layerscale_value is not None else nn.Identity()
|
|
|
|
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
shortcut = x
|
|
|
|
|
|
|
|
|
|
# Focal Modulation
|
|
|
|
|
x = self.norm1(x)
|
|
|
|
|
x = self.modulation(x)
|
|
|
|
|
x = self.norm1_post(x)
|
|
|
|
|
x = shortcut + self.drop_path1(self.ls1(x))
|
|
|
|
|
|
|
|
|
|
# FFN
|
|
|
|
|
x = x + self.drop_path2(self.ls2(self.norm2_post(self.mlp(self.norm2(x)))))
|
|
|
|
|
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BasicLayer(nn.Module):
|
|
|
|
|
""" A basic Focal Transformer layer for one stage.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
dim (int): Number of input channels.
|
|
|
|
|
depth (int): Number of blocks.
|
|
|
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
|
|
|
|
drop (float, optional): Dropout rate. Default: 0.0
|
|
|
|
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
|
|
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
|
|
|
|
downsample (bool): Downsample layer at start of the layer. Default: True
|
|
|
|
|
focal_level (int): Number of focal levels
|
|
|
|
|
focal_window (int): Focal window size at first focal level
|
|
|
|
|
layerscale_value (float): Initial layerscale value
|
|
|
|
|
use_post_norm (bool): Whether to use layer norm after modulation
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
dim,
|
|
|
|
|
out_dim,
|
|
|
|
|
depth,
|
|
|
|
|
mlp_ratio=4.,
|
|
|
|
|
downsample=True,
|
|
|
|
|
focal_level=1,
|
|
|
|
|
focal_window=1,
|
|
|
|
|
use_overlap_down=False,
|
|
|
|
|
use_post_norm=False,
|
|
|
|
|
use_post_norm_in_modulation=False,
|
|
|
|
|
normalize_modulator=False,
|
|
|
|
|
layerscale_value=1e-4,
|
|
|
|
|
proj_drop=0.,
|
|
|
|
|
drop_path=0.,
|
|
|
|
|
norm_layer=LayerNorm2d,
|
|
|
|
|
):
|
|
|
|
|
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.dim = dim
|
|
|
|
|
self.depth = depth
|
|
|
|
|
self.grad_checkpointing = False
|
|
|
|
|
|
|
|
|
|
if downsample:
|
|
|
|
|
self.downsample = Downsample(
|
|
|
|
|
in_chs=dim,
|
|
|
|
|
out_chs=out_dim,
|
|
|
|
|
stride=2,
|
|
|
|
|
overlap=use_overlap_down,
|
|
|
|
|
norm_layer=norm_layer,
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
self.downsample = nn.Identity()
|
|
|
|
|
|
|
|
|
|
# build blocks
|
|
|
|
|
self.blocks = nn.ModuleList([
|
|
|
|
|
FocalNetBlock(
|
|
|
|
|
dim=out_dim,
|
|
|
|
|
mlp_ratio=mlp_ratio,
|
|
|
|
|
focal_level=focal_level,
|
|
|
|
|
focal_window=focal_window,
|
|
|
|
|
use_post_norm=use_post_norm,
|
|
|
|
|
use_post_norm_in_modulation=use_post_norm_in_modulation,
|
|
|
|
|
normalize_modulator=normalize_modulator,
|
|
|
|
|
layerscale_value=layerscale_value,
|
|
|
|
|
proj_drop=proj_drop,
|
|
|
|
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
|
|
|
|
norm_layer=norm_layer,
|
|
|
|
|
)
|
|
|
|
|
for i in range(depth)])
|
|
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
|
def set_grad_checkpointing(self, enable=True):
|
|
|
|
|
self.grad_checkpointing = enable
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
x = self.downsample(x)
|
|
|
|
|
for blk in self.blocks:
|
|
|
|
|
if self.grad_checkpointing and not torch.jit.is_scripting():
|
|
|
|
|
x = checkpoint.checkpoint(blk, x)
|
|
|
|
|
else:
|
|
|
|
|
x = blk(x)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Downsample(nn.Module):
|
|
|
|
|
r"""
|
|
|
|
|
Args:
|
|
|
|
|
in_chs (int): Number of input image channels
|
|
|
|
|
out_chs (int): Number of linear projection output channels
|
|
|
|
|
stride (int): Downsample stride. Default: 4.
|
|
|
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
in_chs,
|
|
|
|
|
out_chs,
|
|
|
|
|
stride=4,
|
|
|
|
|
overlap=False,
|
|
|
|
|
norm_layer=None,
|
|
|
|
|
):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.stride = stride
|
|
|
|
|
padding = 0
|
|
|
|
|
kernel_size = stride
|
|
|
|
|
if overlap:
|
|
|
|
|
assert stride in (2, 4)
|
|
|
|
|
if stride == 4:
|
|
|
|
|
kernel_size, padding = 7, 2
|
|
|
|
|
elif stride == 2:
|
|
|
|
|
kernel_size, padding = 3, 1
|
|
|
|
|
self.proj = nn.Conv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride, padding=padding)
|
|
|
|
|
self.norm = norm_layer(out_chs) if norm_layer is not None else nn.Identity()
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
x = self.proj(x)
|
|
|
|
|
x = self.norm(x)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class FocalNet(nn.Module):
|
|
|
|
|
r""" Focal Modulation Networks (FocalNets)
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
in_chans (int): Number of input image channels. Default: 3
|
|
|
|
|
num_classes (int): Number of classes for classification head. Default: 1000
|
|
|
|
|
embed_dim (int): Patch embedding dimension. Default: 96
|
|
|
|
|
depths (tuple(int)): Depth of each Focal Transformer layer.
|
|
|
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
|
|
|
|
focal_levels (list): How many focal levels at all stages. Note that this excludes the finest-grain level.
|
|
|
|
|
Default: [1, 1, 1, 1]
|
|
|
|
|
focal_windows (list): The focal window size at all stages. Default: [7, 5, 3, 1]
|
|
|
|
|
use_overlap_down (bool): Whether to use convolutional embedding.
|
|
|
|
|
use_post_norm (bool): Whether to use layernorm after modulation (it helps stablize training of large models)
|
|
|
|
|
layerscale_value (float): Value for layer scale. Default: 1e-4
|
|
|
|
|
drop_rate (float): Dropout rate. Default: 0
|
|
|
|
|
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
|
|
|
|
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
in_chans=3,
|
|
|
|
|
num_classes=1000,
|
|
|
|
|
global_pool='avg',
|
|
|
|
|
embed_dim=96,
|
|
|
|
|
depths=(2, 2, 6, 2),
|
|
|
|
|
mlp_ratio=4.,
|
|
|
|
|
focal_levels=(2, 2, 2, 2),
|
|
|
|
|
focal_windows=(3, 3, 3, 3),
|
|
|
|
|
use_overlap_down=False,
|
|
|
|
|
use_post_norm=False,
|
|
|
|
|
use_post_norm_in_modulation=False,
|
|
|
|
|
normalize_modulator=False,
|
|
|
|
|
head_hidden_size=None,
|
|
|
|
|
head_init_scale=1.0,
|
|
|
|
|
layerscale_value=None,
|
|
|
|
|
drop_rate=0.,
|
|
|
|
|
proj_drop_rate=0.,
|
|
|
|
|
drop_path_rate=0.1,
|
|
|
|
|
norm_layer=partial(LayerNorm2d, eps=1e-5),
|
|
|
|
|
**kwargs,
|
|
|
|
|
):
|
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
|
|
self.num_layers = len(depths)
|
|
|
|
|
embed_dim = [embed_dim * (2 ** i) for i in range(self.num_layers)]
|
|
|
|
|
|
|
|
|
|
self.num_classes = num_classes
|
|
|
|
|
self.embed_dim = embed_dim
|
|
|
|
|
self.num_features = embed_dim[-1]
|
|
|
|
|
self.feature_info = []
|
|
|
|
|
|
|
|
|
|
self.stem = Downsample(
|
|
|
|
|
in_chs=in_chans,
|
|
|
|
|
out_chs=embed_dim[0],
|
|
|
|
|
overlap=use_overlap_down,
|
|
|
|
|
norm_layer=norm_layer,
|
|
|
|
|
)
|
|
|
|
|
in_dim = embed_dim[0]
|
|
|
|
|
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
|
|
|
|
layers = []
|
|
|
|
|
for i_layer in range(self.num_layers):
|
|
|
|
|
out_dim = embed_dim[i_layer]
|
|
|
|
|
layer = BasicLayer(
|
|
|
|
|
dim=in_dim,
|
|
|
|
|
out_dim=out_dim,
|
|
|
|
|
depth=depths[i_layer],
|
|
|
|
|
mlp_ratio=mlp_ratio,
|
|
|
|
|
downsample=i_layer > 0,
|
|
|
|
|
focal_level=focal_levels[i_layer],
|
|
|
|
|
focal_window=focal_windows[i_layer],
|
|
|
|
|
use_overlap_down=use_overlap_down,
|
|
|
|
|
use_post_norm=use_post_norm,
|
|
|
|
|
use_post_norm_in_modulation=use_post_norm_in_modulation,
|
|
|
|
|
normalize_modulator=normalize_modulator,
|
|
|
|
|
layerscale_value=layerscale_value,
|
|
|
|
|
proj_drop=proj_drop_rate,
|
|
|
|
|
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
|
|
|
|
norm_layer=norm_layer,
|
|
|
|
|
)
|
|
|
|
|
in_dim = out_dim
|
|
|
|
|
layers += [layer]
|
|
|
|
|
self.feature_info += [dict(num_chs=out_dim, reduction=4 * 2 ** i_layer, module=f'layers.{i_layer}')]
|
|
|
|
|
|
|
|
|
|
self.layers = nn.Sequential(*layers)
|
|
|
|
|
|
|
|
|
|
if head_hidden_size:
|
|
|
|
|
self.norm = nn.Identity()
|
|
|
|
|
self.head = NormMlpClassifierHead(
|
|
|
|
|
self.num_features,
|
|
|
|
|
num_classes,
|
|
|
|
|
hidden_size=head_hidden_size,
|
|
|
|
|
pool_type=global_pool,
|
|
|
|
|
drop_rate=drop_rate,
|
|
|
|
|
norm_layer=norm_layer,
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
self.norm = norm_layer(self.num_features)
|
|
|
|
|
self.head = ClassifierHead(
|
|
|
|
|
self.num_features,
|
|
|
|
|
num_classes,
|
|
|
|
|
pool_type=global_pool,
|
|
|
|
|
drop_rate=drop_rate
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
named_apply(partial(_init_weights, head_init_scale=head_init_scale), self)
|
|
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
|
def no_weight_decay(self):
|
|
|
|
|
return {''}
|
|
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
|
def set_grad_checkpointing(self, enable=True):
|
|
|
|
|
self.grad_checkpointing = enable
|
|
|
|
|
for l in self.layers:
|
|
|
|
|
l.set_grad_checkpointing(enable=enable)
|
|
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
|
def get_classifier(self):
|
|
|
|
|
return self.classifier.fc
|
|
|
|
|
|
|
|
|
|
def reset_classifier(self, num_classes, global_pool=None):
|
|
|
|
|
self.classifier.reset(num_classes, global_pool=global_pool)
|
|
|
|
|
|
|
|
|
|
def forward_features(self, x):
|
|
|
|
|
x = self.stem(x)
|
|
|
|
|
x = self.layers(x)
|
|
|
|
|
x = self.norm(x)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
def forward_head(self, x, pre_logits: bool = False):
|
|
|
|
|
return self.head(x, pre_logits=pre_logits)
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
x = self.forward_features(x)
|
|
|
|
|
x = self.forward_head(x)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _init_weights(module, name=None, head_init_scale=1.0):
|
|
|
|
|
if isinstance(module, nn.Conv2d):
|
|
|
|
|
trunc_normal_(module.weight, std=.02)
|
|
|
|
|
if module.bias is not None:
|
|
|
|
|
nn.init.zeros_(module.bias)
|
|
|
|
|
elif isinstance(module, nn.Linear):
|
|
|
|
|
trunc_normal_(module.weight, std=.02)
|
|
|
|
|
if module.bias is not None:
|
|
|
|
|
nn.init.zeros_(module.bias)
|
|
|
|
|
if name and 'head.fc' in name:
|
|
|
|
|
module.weight.data.mul_(head_init_scale)
|
|
|
|
|
module.bias.data.mul_(head_init_scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
|
|
|
return {
|
|
|
|
|
'url': url,
|
|
|
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
|
|
|
|
'crop_pct': .9, 'interpolation': 'bicubic',
|
|
|
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
|
|
|
'first_conv': 'stem.proj', 'classifier': 'head.fc',
|
|
|
|
|
**kwargs
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
default_cfgs = {
|
|
|
|
|
"focalnet_tiny_srf": _cfg(
|
|
|
|
|
url='https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth'),
|
|
|
|
|
"focalnet_small_srf": _cfg(
|
|
|
|
|
url='https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth'),
|
|
|
|
|
"focalnet_base_srf": _cfg(
|
|
|
|
|
url='https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth'),
|
|
|
|
|
"focalnet_tiny_lrf": _cfg(
|
|
|
|
|
url='https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth'),
|
|
|
|
|
"focalnet_small_lrf": _cfg(
|
|
|
|
|
url='https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth'),
|
|
|
|
|
"focalnet_base_lrf": _cfg(
|
|
|
|
|
url='https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth'),
|
|
|
|
|
"focalnet_large_fl3": _cfg(
|
|
|
|
|
url='https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth',
|
|
|
|
|
input_size=(3, 384, 384), crop_pct=1.0, num_classes=21842),
|
|
|
|
|
"focalnet_large_fl4": _cfg(
|
|
|
|
|
url='https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth',
|
|
|
|
|
input_size=(3, 384, 384), crop_pct=1.0, num_classes=21842),
|
|
|
|
|
"focalnet_xlarge_fl3": _cfg(
|
|
|
|
|
url='https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth',
|
|
|
|
|
input_size=(3, 384, 384), crop_pct=1.0, num_classes=21842),
|
|
|
|
|
"focalnet_xlarge_fl4": _cfg(
|
|
|
|
|
url='https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth',
|
|
|
|
|
input_size=(3, 384, 384), crop_pct=1.0, num_classes=21842),
|
|
|
|
|
"focalnet_huge_fl3": _cfg(
|
|
|
|
|
url='https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_huge_lrf_224.pth',
|
|
|
|
|
num_classes=0),
|
|
|
|
|
"focalnet_huge_fl4": _cfg(
|
|
|
|
|
url='https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_huge_lrf_224_fl4.pth',
|
|
|
|
|
num_classes=0),
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model: FocalNet):
|
|
|
|
|
if 'stem.proj.weight' in state_dict:
|
|
|
|
|
return
|
|
|
|
|
import re
|
|
|
|
|
out_dict = {}
|
|
|
|
|
if 'model' in state_dict:
|
|
|
|
|
state_dict = state_dict['model']
|
|
|
|
|
dest_dict = model.state_dict()
|
|
|
|
|
for k, v in state_dict.items():
|
|
|
|
|
k = re.sub(r'gamma_([0-9])', r'ls\1.gamma', k)
|
|
|
|
|
k = k.replace('patch_embed', 'stem')
|
|
|
|
|
k = re.sub(r'layers.(\d+).downsample', lambda x: f'layers.{int(x.group(1)) + 1}.downsample', k)
|
|
|
|
|
if 'norm' in k and k not in dest_dict:
|
|
|
|
|
k = re.sub(r'norm([0-9])', r'norm\1_post', k)
|
|
|
|
|
k = k.replace('ln.', 'norm.')
|
|
|
|
|
k = k.replace('head', 'head.fc')
|
|
|
|
|
if dest_dict[k].shape != v.shape:
|
|
|
|
|
v = v.reshape(dest_dict[k].shape)
|
|
|
|
|
out_dict[k] = v
|
|
|
|
|
return out_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _create_focalnet(variant, pretrained=False, **kwargs):
|
|
|
|
|
default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 3, 1))))
|
|
|
|
|
out_indices = kwargs.pop('out_indices', default_out_indices)
|
|
|
|
|
|
|
|
|
|
model = build_model_with_cfg(
|
|
|
|
|
FocalNet, variant, pretrained,
|
|
|
|
|
pretrained_filter_fn=checkpoint_filter_fn,
|
|
|
|
|
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
|
|
|
|
|
**kwargs)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def focalnet_tiny_srf(pretrained=False, **kwargs):
|
|
|
|
|
model_kwargs = dict(depths=[2, 2, 6, 2], embed_dim=96, **kwargs)
|
|
|
|
|
return _create_focalnet('focalnet_tiny_srf', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def focalnet_small_srf(pretrained=False, **kwargs):
|
|
|
|
|
model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=96, **kwargs)
|
|
|
|
|
return _create_focalnet('focalnet_small_srf', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def focalnet_base_srf(pretrained=False, **kwargs):
|
|
|
|
|
model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=128, **kwargs)
|
|
|
|
|
return _create_focalnet('focalnet_base_srf', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def focalnet_tiny_lrf(pretrained=False, **kwargs):
|
|
|
|
|
model_kwargs = dict(depths=[2, 2, 6, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs)
|
|
|
|
|
return _create_focalnet('focalnet_tiny_lrf', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def focalnet_small_lrf(pretrained=False, **kwargs):
|
|
|
|
|
model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs)
|
|
|
|
|
return _create_focalnet('focalnet_small_lrf', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def focalnet_base_lrf(pretrained=False, **kwargs):
|
|
|
|
|
model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=128, focal_levels=[3, 3, 3, 3], **kwargs)
|
|
|
|
|
return _create_focalnet('focalnet_base_lrf', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# FocalNet large+ models
|
|
|
|
|
@register_model
|
|
|
|
|
def focalnet_large_fl3(pretrained=False, **kwargs):
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
|
depths=[2, 2, 18, 2], embed_dim=192, focal_levels=[3, 3, 3, 3], focal_windows=[5] * 4,
|
|
|
|
|
use_post_norm=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs)
|
|
|
|
|
return _create_focalnet('focalnet_large_fl3', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def focalnet_large_fl4(pretrained=False, **kwargs):
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
|
depths=[2, 2, 18, 2], embed_dim=192, focal_levels=[4, 4, 4, 4],
|
|
|
|
|
use_post_norm=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs)
|
|
|
|
|
return _create_focalnet('focalnet_large_fl4', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def focalnet_xlarge_fl3(pretrained=False, **kwargs):
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
|
depths=[2, 2, 18, 2], embed_dim=256, focal_levels=[3, 3, 3, 3], focal_windows=[5] * 4,
|
|
|
|
|
use_post_norm=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs)
|
|
|
|
|
return _create_focalnet('focalnet_xlarge_fl3', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def focalnet_xlarge_fl4(pretrained=False, **kwargs):
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
|
depths=[2, 2, 18, 2], embed_dim=256, focal_levels=[4, 4, 4, 4],
|
|
|
|
|
use_post_norm=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs)
|
|
|
|
|
return _create_focalnet('focalnet_xlarge_fl4', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def focalnet_huge_fl3(pretrained=False, **kwargs):
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
|
depths=[2, 2, 18, 2], embed_dim=352, focal_levels=[3, 3, 3, 3], focal_windows=[3] * 4,
|
|
|
|
|
use_post_norm=True, use_post_norm_in_modulation=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs)
|
|
|
|
|
return _create_focalnet('focalnet_huge_fl3', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def focalnet_huge_fl4(pretrained=False, **kwargs):
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
|
depths=[2, 2, 18, 2], embed_dim=352, focal_levels=[4, 4, 4, 4],
|
|
|
|
|
use_post_norm=True, use_post_norm_in_modulation=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs)
|
|
|
|
|
return _create_focalnet('focalnet_huge_fl4', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|