|
|
|
@ -1,16 +1,42 @@
|
|
|
|
|
""" ConvNeXt
|
|
|
|
|
|
|
|
|
|
Paper: `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf
|
|
|
|
|
|
|
|
|
|
Original code and weights from https://github.com/facebookresearch/ConvNeXt, original copyright below
|
|
|
|
|
|
|
|
|
|
Model defs atto, femto, pico, nano and _ols / _hnf variants are timm specific.
|
|
|
|
|
Papers:
|
|
|
|
|
* `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf
|
|
|
|
|
@Article{liu2022convnet,
|
|
|
|
|
author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie},
|
|
|
|
|
title = {A ConvNet for the 2020s},
|
|
|
|
|
journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
|
|
|
|
year = {2022},
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
* `ConvNeXt-V2 - Co-designing and Scaling ConvNets with Masked Autoencoders` - https://arxiv.org/abs/2301.00808
|
|
|
|
|
@article{Woo2023ConvNeXtV2,
|
|
|
|
|
title={ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders},
|
|
|
|
|
author={Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon and Saining Xie},
|
|
|
|
|
year={2023},
|
|
|
|
|
journal={arXiv preprint arXiv:2301.00808},
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Original code and weights from:
|
|
|
|
|
* https://github.com/facebookresearch/ConvNeXt, original copyright below
|
|
|
|
|
* https://github.com/facebookresearch/ConvNeXt-V2, original copyright below
|
|
|
|
|
|
|
|
|
|
Model defs atto, femto, pico, nano and _ols / _hnf variants are timm originals.
|
|
|
|
|
|
|
|
|
|
Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman
|
|
|
|
|
"""
|
|
|
|
|
# ConvNeXt
|
|
|
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
|
|
|
# All rights reserved.
|
|
|
|
|
# This source code is licensed under the MIT license
|
|
|
|
|
|
|
|
|
|
# ConvNeXt-V2
|
|
|
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
|
|
|
# All rights reserved.
|
|
|
|
|
# This source code is licensed under the license found in the
|
|
|
|
|
# LICENSE file in the root directory of this source tree (Attribution-NonCommercial 4.0 International (CC BY-NC 4.0))
|
|
|
|
|
# No code was used directly from ConvNeXt-V2, however the weights are CC BY-NC 4.0 so beware if using commercially.
|
|
|
|
|
|
|
|
|
|
from collections import OrderedDict
|
|
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
|
@ -18,8 +44,8 @@ import torch
|
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
|
from timm.layers import trunc_normal_, SelectAdaptivePool2d, DropPath, ConvMlp, Mlp, LayerNorm2d, LayerNorm, \
|
|
|
|
|
create_conv2d, get_act_layer, make_divisible, to_ntuple
|
|
|
|
|
from timm.layers import trunc_normal_, SelectAdaptivePool2d, DropPath, Mlp, GlobalResponseNormMlp, \
|
|
|
|
|
LayerNorm2d, LayerNorm, create_conv2d, get_act_layer, make_divisible, to_ntuple
|
|
|
|
|
from ._builder import build_model_with_cfg
|
|
|
|
|
from ._manipulate import named_apply, checkpoint_seq
|
|
|
|
|
from ._pretrained import generate_default_cfgs
|
|
|
|
@ -54,6 +80,7 @@ class ConvNeXtBlock(nn.Module):
|
|
|
|
|
mlp_ratio=4,
|
|
|
|
|
conv_mlp=False,
|
|
|
|
|
conv_bias=True,
|
|
|
|
|
use_grn=False,
|
|
|
|
|
ls_init_value=1e-6,
|
|
|
|
|
act_layer='gelu',
|
|
|
|
|
norm_layer=None,
|
|
|
|
@ -64,14 +91,13 @@ class ConvNeXtBlock(nn.Module):
|
|
|
|
|
act_layer = get_act_layer(act_layer)
|
|
|
|
|
if not norm_layer:
|
|
|
|
|
norm_layer = LayerNorm2d if conv_mlp else LayerNorm
|
|
|
|
|
mlp_layer = ConvMlp if conv_mlp else Mlp
|
|
|
|
|
mlp_layer = partial(GlobalResponseNormMlp if use_grn else Mlp, use_conv=conv_mlp)
|
|
|
|
|
self.use_conv_mlp = conv_mlp
|
|
|
|
|
|
|
|
|
|
self.conv_dw = create_conv2d(
|
|
|
|
|
in_chs, out_chs, kernel_size=kernel_size, stride=stride, dilation=dilation, depthwise=True, bias=conv_bias)
|
|
|
|
|
self.norm = norm_layer(out_chs)
|
|
|
|
|
self.mlp = mlp_layer(out_chs, int(mlp_ratio * out_chs), act_layer=act_layer)
|
|
|
|
|
self.gamma = nn.Parameter(ls_init_value * torch.ones(out_chs)) if ls_init_value > 0 else None
|
|
|
|
|
self.gamma = nn.Parameter(ls_init_value * torch.ones(out_chs)) if ls_init_value is not None else None
|
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
@ -106,6 +132,7 @@ class ConvNeXtStage(nn.Module):
|
|
|
|
|
ls_init_value=1.0,
|
|
|
|
|
conv_mlp=False,
|
|
|
|
|
conv_bias=True,
|
|
|
|
|
use_grn=False,
|
|
|
|
|
act_layer='gelu',
|
|
|
|
|
norm_layer=None,
|
|
|
|
|
norm_layer_cl=None
|
|
|
|
@ -138,6 +165,7 @@ class ConvNeXtStage(nn.Module):
|
|
|
|
|
ls_init_value=ls_init_value,
|
|
|
|
|
conv_mlp=conv_mlp,
|
|
|
|
|
conv_bias=conv_bias,
|
|
|
|
|
use_grn=use_grn,
|
|
|
|
|
act_layer=act_layer,
|
|
|
|
|
norm_layer=norm_layer if conv_mlp else norm_layer_cl
|
|
|
|
|
))
|
|
|
|
@ -184,6 +212,7 @@ class ConvNeXt(nn.Module):
|
|
|
|
|
head_norm_first=False,
|
|
|
|
|
conv_mlp=False,
|
|
|
|
|
conv_bias=True,
|
|
|
|
|
use_grn=False,
|
|
|
|
|
act_layer='gelu',
|
|
|
|
|
norm_layer=None,
|
|
|
|
|
drop_rate=0.,
|
|
|
|
@ -247,6 +276,7 @@ class ConvNeXt(nn.Module):
|
|
|
|
|
ls_init_value=ls_init_value,
|
|
|
|
|
conv_mlp=conv_mlp,
|
|
|
|
|
conv_bias=conv_bias,
|
|
|
|
|
use_grn=use_grn,
|
|
|
|
|
act_layer=act_layer,
|
|
|
|
|
norm_layer=norm_layer,
|
|
|
|
|
norm_layer_cl=norm_layer_cl
|
|
|
|
@ -259,10 +289,11 @@ class ConvNeXt(nn.Module):
|
|
|
|
|
|
|
|
|
|
# if head_norm_first == true, norm -> global pool -> fc ordering, like most other nets
|
|
|
|
|
# otherwise pool -> norm -> fc, the default ConvNeXt ordering (pretrained FB weights)
|
|
|
|
|
self.head_norm_first = head_norm_first
|
|
|
|
|
self.norm_pre = norm_layer(self.num_features) if head_norm_first else nn.Identity()
|
|
|
|
|
self.head = nn.Sequential(OrderedDict([
|
|
|
|
|
('global_pool', SelectAdaptivePool2d(pool_type=global_pool)),
|
|
|
|
|
('norm', nn.Identity() if head_norm_first else norm_layer(self.num_features)),
|
|
|
|
|
('norm', nn.Identity() if head_norm_first or num_classes == 0 else norm_layer(self.num_features)),
|
|
|
|
|
('flatten', nn.Flatten(1) if global_pool else nn.Identity()),
|
|
|
|
|
('drop', nn.Dropout(self.drop_rate)),
|
|
|
|
|
('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity())]))
|
|
|
|
@ -293,7 +324,14 @@ class ConvNeXt(nn.Module):
|
|
|
|
|
if global_pool is not None:
|
|
|
|
|
self.head.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
|
|
|
|
self.head.flatten = nn.Flatten(1) if global_pool else nn.Identity()
|
|
|
|
|
self.head.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
|
if num_classes == 0:
|
|
|
|
|
self.head.norm = nn.Identity()
|
|
|
|
|
self.head.fc = nn.Identity()
|
|
|
|
|
else:
|
|
|
|
|
if not self.head_norm_first:
|
|
|
|
|
norm_layer = type(self.stem[-1]) # obtain type from stem norm
|
|
|
|
|
self.head.norm = norm_layer(self.num_features)
|
|
|
|
|
self.head.fc = nn.Linear(self.num_features, num_classes)
|
|
|
|
|
|
|
|
|
|
def forward_features(self, x):
|
|
|
|
|
x = self.stem(x)
|
|
|
|
@ -342,6 +380,10 @@ def checkpoint_filter_fn(state_dict, model):
|
|
|
|
|
k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k)
|
|
|
|
|
k = k.replace('dwconv', 'conv_dw')
|
|
|
|
|
k = k.replace('pwconv', 'mlp.fc')
|
|
|
|
|
if 'grn' in k:
|
|
|
|
|
k = k.replace('grn.beta', 'mlp.grn.bias')
|
|
|
|
|
k = k.replace('grn.gamma', 'mlp.grn.weight')
|
|
|
|
|
v = v.reshape(v.shape[-1])
|
|
|
|
|
k = k.replace('head.', 'head.fc.')
|
|
|
|
|
if k.startswith('norm.'):
|
|
|
|
|
k = k.replace('norm', 'head.norm')
|
|
|
|
@ -372,6 +414,20 @@ def _cfg(url='', **kwargs):
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _cfgv2(url='', **kwargs):
|
|
|
|
|
return {
|
|
|
|
|
'url': url,
|
|
|
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
|
|
|
|
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
|
|
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
|
|
|
'first_conv': 'stem.0', 'classifier': 'head.fc',
|
|
|
|
|
'license': 'cc-by-nc-4.0', 'paper_ids': 'arXiv:2301.00808',
|
|
|
|
|
'paper_name': 'ConvNeXt-V2: Co-designing and Scaling ConvNets with Masked Autoencoders',
|
|
|
|
|
'origin_url': 'https://github.com/facebookresearch/ConvNeXt-V2',
|
|
|
|
|
**kwargs
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
default_cfgs = generate_default_cfgs({
|
|
|
|
|
# timm specific variants
|
|
|
|
|
'convnext_atto.d2_in1k': _cfg(
|
|
|
|
@ -499,6 +555,115 @@ default_cfgs = generate_default_cfgs({
|
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth",
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
num_classes=21841),
|
|
|
|
|
|
|
|
|
|
'convnextv2_nano.fcmae_ft_in22k_in1k': _cfgv2(
|
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_224_ema.pt',
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
|
'convnextv2_nano.fcmae_ft_in22k_in1k_384': _cfgv2(
|
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_384_ema.pt',
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
|
'convnextv2_tiny.fcmae_ft_in22k_in1k': _cfgv2(
|
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_224_ema.pt",
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
|
'convnextv2_tiny.fcmae_ft_in22k_in1k_384': _cfgv2(
|
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_384_ema.pt",
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
|
'convnextv2_base.fcmae_ft_in22k_in1k': _cfgv2(
|
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_224_ema.pt",
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
|
'convnextv2_base.fcmae_ft_in22k_in1k_384': _cfgv2(
|
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_384_ema.pt",
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
|
'convnextv2_large.fcmae_ft_in22k_in1k': _cfgv2(
|
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_224_ema.pt",
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
|
'convnextv2_large.fcmae_ft_in22k_in1k_384': _cfgv2(
|
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_384_ema.pt",
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
|
'convnextv2_huge.fcmae_ft_in22k_in1k_384': _cfgv2(
|
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_384_ema.pt",
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
|
'convnextv2_huge.fcmae_ft_in22k_in1k_512': _cfgv2(
|
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_512_ema.pt",
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
input_size=(3, 512, 512), pool_size=(15, 15), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
|
|
|
|
|
|
'convnextv2_atto.fcmae_ft_in1k': _cfgv2(
|
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_atto_1k_224_ema.pt',
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=0.95),
|
|
|
|
|
'convnextv2_femto.fcmae_ft_in1k': _cfgv2(
|
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_femto_1k_224_ema.pt',
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=0.95),
|
|
|
|
|
'convnextv2_pico.fcmae_ft_in1k': _cfgv2(
|
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_pico_1k_224_ema.pt',
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=0.95),
|
|
|
|
|
'convnextv2_nano.fcmae_ft_in1k': _cfgv2(
|
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_nano_1k_224_ema.pt',
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
|
'convnextv2_tiny.fcmae_ft_in1k': _cfgv2(
|
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_tiny_1k_224_ema.pt",
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
|
'convnextv2_base.fcmae_ft_in1k': _cfgv2(
|
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_base_1k_224_ema.pt",
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
|
'convnextv2_large.fcmae_ft_in1k': _cfgv2(
|
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_large_1k_224_ema.pt",
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
|
'convnextv2_huge.fcmae_ft_in1k': _cfgv2(
|
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_huge_1k_224_ema.pt",
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
|
|
|
|
|
|
'convnextv2_atto.fcmae': _cfgv2(
|
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_atto_1k_224_fcmae.pt',
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
num_classes=0),
|
|
|
|
|
'convnextv2_femto.fcmae': _cfgv2(
|
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_femto_1k_224_fcmae.pt',
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
num_classes=0),
|
|
|
|
|
'convnextv2_pico.fcmae': _cfgv2(
|
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_pico_1k_224_fcmae.pt',
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
num_classes=0),
|
|
|
|
|
'convnextv2_nano.fcmae': _cfgv2(
|
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_nano_1k_224_fcmae.pt',
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
num_classes=0),
|
|
|
|
|
'convnextv2_tiny.fcmae': _cfgv2(
|
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_tiny_1k_224_fcmae.pt",
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
num_classes=0),
|
|
|
|
|
'convnextv2_base.fcmae': _cfgv2(
|
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_base_1k_224_fcmae.pt",
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
num_classes=0),
|
|
|
|
|
'convnextv2_large.fcmae': _cfgv2(
|
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_large_1k_224_fcmae.pt",
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
num_classes=0),
|
|
|
|
|
'convnextv2_huge.fcmae': _cfgv2(
|
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_huge_1k_224_fcmae.pt",
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
num_classes=0),
|
|
|
|
|
|
|
|
|
|
'convnextv2_small.untrained': _cfg(),
|
|
|
|
|
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -623,3 +788,75 @@ def convnext_xxlarge(pretrained=False, **kwargs):
|
|
|
|
|
model_args = dict(depths=[3, 4, 30, 3], dims=[384, 768, 1536, 3072], **kwargs)
|
|
|
|
|
model = _create_convnext('convnext_xxlarge', pretrained=pretrained, **model_args)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def convnextv2_atto(pretrained=False, **kwargs):
|
|
|
|
|
# timm femto variant (NOTE: still tweaking depths, will vary between 3-4M param, current is 3.7M
|
|
|
|
|
model_args = dict(
|
|
|
|
|
depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), use_grn=True, ls_init_value=None, conv_mlp=True, **kwargs)
|
|
|
|
|
model = _create_convnext('convnextv2_atto', pretrained=pretrained, **model_args)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def convnextv2_femto(pretrained=False, **kwargs):
|
|
|
|
|
# timm femto variant
|
|
|
|
|
model_args = dict(
|
|
|
|
|
depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), use_grn=True, ls_init_value=None, conv_mlp=True, **kwargs)
|
|
|
|
|
model = _create_convnext('convnextv2_femto', pretrained=pretrained, **model_args)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def convnextv2_pico(pretrained=False, **kwargs):
|
|
|
|
|
# timm pico variant
|
|
|
|
|
model_args = dict(
|
|
|
|
|
depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), use_grn=True, ls_init_value=None, conv_mlp=True, **kwargs)
|
|
|
|
|
model = _create_convnext('convnextv2_pico', pretrained=pretrained, **model_args)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def convnextv2_nano(pretrained=False, **kwargs):
|
|
|
|
|
# timm nano variant with standard stem and head
|
|
|
|
|
model_args = dict(
|
|
|
|
|
depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), use_grn=True, ls_init_value=None, conv_mlp=True, **kwargs)
|
|
|
|
|
model = _create_convnext('convnextv2_nano', pretrained=pretrained, **model_args)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def convnextv2_tiny(pretrained=False, **kwargs):
|
|
|
|
|
model_args = dict(
|
|
|
|
|
depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), use_grn=True, ls_init_value=None, **kwargs)
|
|
|
|
|
model = _create_convnext('convnextv2_tiny', pretrained=pretrained, **model_args)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def convnextv2_small(pretrained=False, **kwargs):
|
|
|
|
|
model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], use_grn=True, ls_init_value=None, **kwargs)
|
|
|
|
|
model = _create_convnext('convnextv2_small', pretrained=pretrained, **model_args)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def convnextv2_base(pretrained=False, **kwargs):
|
|
|
|
|
model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], use_grn=True, ls_init_value=None, **kwargs)
|
|
|
|
|
model = _create_convnext('convnextv2_base', pretrained=pretrained, **model_args)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def convnextv2_large(pretrained=False, **kwargs):
|
|
|
|
|
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], use_grn=True, ls_init_value=None, **kwargs)
|
|
|
|
|
model = _create_convnext('convnextv2_large', pretrained=pretrained, **model_args)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def convnextv2_huge(pretrained=False, **kwargs):
|
|
|
|
|
model_args = dict(depths=[3, 3, 27, 3], dims=[352, 704, 1408, 2816], use_grn=True, ls_init_value=None, **kwargs)
|
|
|
|
|
model = _create_convnext('convnextv2_huge', pretrained=pretrained, **model_args)
|
|
|
|
|
return model
|