add aa stem logic, minimal docstrings

pull/603/merge^2
Rahul Somani 4 years ago
parent c4bb8c7d4a
commit f8ce54893c

@ -41,6 +41,7 @@ default_cfgs = {
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth'),
'mobilenetv3_large_075_aa': _cfg(url=''),
'mobilenetv3_large_100_aa': _cfg(url='https://storage.googleapis.com/cinemanet-models/pretrained/mobilenetv3_large_100_aa_224x224_ema.pth'),
'mobilenetv3_large_100_aa_stem': _cfg(url=''),
'mobilenetv3_large_100_miil': _cfg(
interpolation='bilinear', mean=(0, 0, 0), std=(1, 1, 1),
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/mobilenetv3_large_100_1k_miil_78_0.pth'),
@ -87,7 +88,7 @@ class MobileNetV3(nn.Module):
def __init__(self, block_args, num_classes=1000, in_chans=3, stem_size=16, num_features=1280, head_bias=True,
channel_multiplier=1.0, pad_type='', act_layer=nn.ReLU, drop_rate=0., drop_path_rate=0.,
se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, global_pool='avg', aa_layer=None):
se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, global_pool='avg', aa_layer=None, aa_stem=None):
super(MobileNetV3, self).__init__()
self.num_classes = num_classes
@ -97,6 +98,7 @@ class MobileNetV3(nn.Module):
# Stem
stem_size = round_channels(stem_size, channel_multiplier)
self.conv_stem = create_conv2d(in_chans, stem_size, 3, stride=2, padding=pad_type)
self.conv_stem_aa = aa_stem(in_chans) if aa_stem else None
self.bn1 = norm_layer(stem_size, **norm_kwargs)
self.act1 = act_layer(inplace=True)
@ -135,6 +137,8 @@ class MobileNetV3(nn.Module):
def forward_features(self, x):
x = self.conv_stem(x)
if self.conv_stem_aa is not None:
x = self.conv_stem_aa(x)
x = self.bn1(x)
x = self.act1(x)
x = self.blocks(x)
@ -416,10 +420,17 @@ def mobilenetv3_large_075_aa(pretrained=False, aa_layer=BlurPool2d, **kwargs):
@register_model
def mobilenetv3_large_100_aa(pretrained=False, aa_layer=BlurPool2d, **kwargs):
""" MobileNet V3 """
""" MobileNet V3 w/ Blur Pooling of IR Blocks """
model = _gen_mobilenet_v3('mobilenetv3_large_100_aa', 1.0, pretrained=pretrained, aa_layer=aa_layer, **kwargs)
return model
@register_model
def mobilenetv3_large_100_aa_stem(pretrained=False, aa_layer=BlurPool2d, aa_stem=BlurPool2d, **kwargs):
""" MobileNet V3 w/ Blur Pooling of IR Blocks & Conv Stem """
model = _gen_mobilenet_v3('mobilenetv3_large_100_aa_stem', 1.0, pretrained=pretrained,
aa_layer=aa_layer, aa_stem=aa_stem, **kwargs)
return model
@register_model
def mobilenetv3_rw(pretrained=False, **kwargs):

Loading…
Cancel
Save