Update metaformers.py

pull/1647/head
Fredo Guan 2 years ago
parent fcaf9b8d23
commit f71beadc29

@ -316,7 +316,7 @@ class RandomMixing(nn.Module):
x = x.reshape(B, H, W, C)
return x
'''
class LayerNormGeneral(nn.Module):
r""" General LayerNorm for different situations.
@ -367,7 +367,54 @@ class LayerNormGeneral(nn.Module):
x = x * self.weight
x = x + self.bias
return x
'''
class LayerNormGeneral(nn.Module):
r""" General LayerNorm for different situations.
Args:
affine_shape (int, list or tuple): The shape of affine weight and bias.
Usually the affine_shape=C, but in some implementation, like torch.nn.LayerNorm,
the affine_shape is the same as normalized_dim by default.
To adapt to different situations, we offer this argument here.
normalized_dim (tuple or list): Which dims to compute mean and variance.
scale (bool): Flag indicates whether to use scale or not.
bias (bool): Flag indicates whether to use scale or not.
We give several examples to show how to specify the arguments.
LayerNorm (https://arxiv.org/abs/1607.06450):
For input shape of (B, *, C) like (B, N, C) or (B, H, W, C),
affine_shape=C, normalized_dim=(-1, ), scale=True, bias=True;
For input shape of (B, C, H, W),
affine_shape=(C, 1, 1), normalized_dim=(1, ), scale=True, bias=True.
Modified LayerNorm (https://arxiv.org/abs/2111.11418)
that is idental to partial(torch.nn.GroupNorm, num_groups=1):
For input shape of (B, N, C),
affine_shape=C, normalized_dim=(1, 2), scale=True, bias=True;
For input shape of (B, H, W, C),
affine_shape=C, normalized_dim=(1, 2, 3), scale=True, bias=True;
For input shape of (B, C, H, W),
affine_shape=(C, 1, 1), normalized_dim=(1, 2, 3), scale=True, bias=True.
For the several metaformer baslines,
IdentityFormer, RandFormer and PoolFormerV2 utilize Modified LayerNorm without bias (bias=False);
ConvFormer and CAFormer utilizes LayerNorm without bias (bias=False).
"""
def __init__(self, affine_shape=None, normalized_dim=(-1, ), scale=True,
bias=True, eps=1e-5):
super().__init__()
self.normalized_dim = normalized_dim
self.use_scale = scale
self.use_bias = bias
self.weight = nn.Parameter(torch.ones(affine_shape)) if scale else None
self.bias = nn.Parameter(torch.zeros(affine_shape)) if bias else None
self.eps = eps
def forward(self, x):
c = x - x.mean(self.normalized_dim, keepdim=True)
s = c.pow(2).mean(self.normalized_dim, keepdim=True)
x = c / torch.sqrt(s + self.eps)
if self.use_scale:
x = x * self.weight
if self.use_bias:
x = x + self.bias
return
class SepConv(nn.Module):
r"""

Loading…
Cancel
Save