Update validate.py to use updated amp args for impl/dtype

pull/1479/head
Ross Wightman 2 years ago
parent d3961536c9
commit eb333d6641

@ -103,11 +103,11 @@ parser.add_argument('--channels-last', action='store_true', default=False,
parser.add_argument('--device', default='cuda', type=str,
help="Device (accelerator) to use.")
parser.add_argument('--amp', action='store_true', default=False,
help='Use AMP mixed precision. Defaults to Apex, fallback to native Torch AMP.')
parser.add_argument('--apex-amp', action='store_true', default=False,
help='Use NVIDIA Apex AMP mixed precision')
parser.add_argument('--native-amp', action='store_true', default=False,
help='Use Native Torch AMP mixed precision')
help='use NVIDIA Apex AMP or Native AMP for mixed precision training')
parser.add_argument('--amp-dtype', default='float16', type=str,
help='lower precision AMP dtype (default: float16)')
parser.add_argument('--amp-impl', default='native', type=str,
help='AMP impl to use, "native" or "apex" (default: native)')
parser.add_argument('--tf-preprocessing', action='store_true', default=False,
help='Use Tensorflow preprocessing pipeline (require CPU TF installed')
parser.add_argument('--use-ema', dest='use_ema', action='store_true',
@ -142,21 +142,22 @@ def validate(args):
device = torch.device(args.device)
amp_autocast = suppress # do nothing
# resolve AMP arguments based on PyTorch / Apex availability
use_amp = None
amp_autocast = suppress
if args.amp:
if has_native_amp:
args.native_amp = True
elif has_apex:
args.apex_amp = True
if args.amp_impl == 'apex':
assert has_apex, 'AMP impl specified as APEX but APEX is not installed.'
assert args.amp_dtype == 'float16'
use_amp = 'apex'
_logger.info('Validating in mixed precision with NVIDIA APEX AMP.')
else:
_logger.warning("Neither APEX or Native Torch AMP is available.")
assert not args.apex_amp or not args.native_amp, "Only one AMP mode should be set."
if args.native_amp:
amp_autocast = partial(torch.autocast, device_type=device.type)
_logger.info('Validating in mixed precision with native PyTorch AMP.')
elif args.apex_amp:
assert device.type == 'cuda'
_logger.info('Validating in mixed precision with NVIDIA APEX AMP.')
assert has_native_amp, 'Please update PyTorch to a version with native AMP (or use APEX).'
assert args.amp_dtype in ('float16', 'bfloat16')
use_amp = 'native'
amp_dtype = torch.bfloat16 if args.amp_dtype == 'bfloat16' else torch.float16
amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype)
_logger.info('Validating in mixed precision with native PyTorch AMP.')
else:
_logger.info('Validating in float32. AMP not enabled.')
@ -204,7 +205,7 @@ def validate(args):
model = memory_efficient_fusion(model)
model = model.to(device)
if args.apex_amp:
if use_amp == 'apex':
model = amp.initialize(model, opt_level='O1')
if args.channels_last:

Loading…
Cancel
Save