commit
e9d2ec4d8e
@ -1,3 +1,7 @@
|
||||
from .nadam import Nadam
|
||||
from .rmsprop_tf import RMSpropTF
|
||||
from .adamw import AdamW
|
||||
from .radam import RAdam
|
||||
from .novograd import NovoGrad
|
||||
from .lookahead import Lookahead
|
||||
from .optim_factory import create_optimizer
|
||||
|
@ -0,0 +1,117 @@
|
||||
""" AdamW Optimizer
|
||||
Impl copied from PyTorch master
|
||||
"""
|
||||
import math
|
||||
import torch
|
||||
from torch.optim.optimizer import Optimizer
|
||||
|
||||
|
||||
class AdamW(Optimizer):
|
||||
r"""Implements AdamW algorithm.
|
||||
|
||||
The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_.
|
||||
The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_.
|
||||
|
||||
Arguments:
|
||||
params (iterable): iterable of parameters to optimize or dicts defining
|
||||
parameter groups
|
||||
lr (float, optional): learning rate (default: 1e-3)
|
||||
betas (Tuple[float, float], optional): coefficients used for computing
|
||||
running averages of gradient and its square (default: (0.9, 0.999))
|
||||
eps (float, optional): term added to the denominator to improve
|
||||
numerical stability (default: 1e-8)
|
||||
weight_decay (float, optional): weight decay coefficient (default: 1e-2)
|
||||
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
|
||||
algorithm from the paper `On the Convergence of Adam and Beyond`_
|
||||
(default: False)
|
||||
|
||||
.. _Adam\: A Method for Stochastic Optimization:
|
||||
https://arxiv.org/abs/1412.6980
|
||||
.. _Decoupled Weight Decay Regularization:
|
||||
https://arxiv.org/abs/1711.05101
|
||||
.. _On the Convergence of Adam and Beyond:
|
||||
https://openreview.net/forum?id=ryQu7f-RZ
|
||||
"""
|
||||
|
||||
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
|
||||
weight_decay=1e-2, amsgrad=False):
|
||||
if not 0.0 <= lr:
|
||||
raise ValueError("Invalid learning rate: {}".format(lr))
|
||||
if not 0.0 <= eps:
|
||||
raise ValueError("Invalid epsilon value: {}".format(eps))
|
||||
if not 0.0 <= betas[0] < 1.0:
|
||||
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
||||
if not 0.0 <= betas[1] < 1.0:
|
||||
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
||||
defaults = dict(lr=lr, betas=betas, eps=eps,
|
||||
weight_decay=weight_decay, amsgrad=amsgrad)
|
||||
super(AdamW, self).__init__(params, defaults)
|
||||
|
||||
def __setstate__(self, state):
|
||||
super(AdamW, self).__setstate__(state)
|
||||
for group in self.param_groups:
|
||||
group.setdefault('amsgrad', False)
|
||||
|
||||
def step(self, closure=None):
|
||||
"""Performs a single optimization step.
|
||||
|
||||
Arguments:
|
||||
closure (callable, optional): A closure that reevaluates the model
|
||||
and returns the loss.
|
||||
"""
|
||||
loss = None
|
||||
if closure is not None:
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
for p in group['params']:
|
||||
if p.grad is None:
|
||||
continue
|
||||
|
||||
# Perform stepweight decay
|
||||
p.data.mul_(1 - group['lr'] * group['weight_decay'])
|
||||
|
||||
# Perform optimization step
|
||||
grad = p.grad.data
|
||||
if grad.is_sparse:
|
||||
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
|
||||
amsgrad = group['amsgrad']
|
||||
|
||||
state = self.state[p]
|
||||
|
||||
# State initialization
|
||||
if len(state) == 0:
|
||||
state['step'] = 0
|
||||
# Exponential moving average of gradient values
|
||||
state['exp_avg'] = torch.zeros_like(p.data)
|
||||
# Exponential moving average of squared gradient values
|
||||
state['exp_avg_sq'] = torch.zeros_like(p.data)
|
||||
if amsgrad:
|
||||
# Maintains max of all exp. moving avg. of sq. grad. values
|
||||
state['max_exp_avg_sq'] = torch.zeros_like(p.data)
|
||||
|
||||
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
||||
if amsgrad:
|
||||
max_exp_avg_sq = state['max_exp_avg_sq']
|
||||
beta1, beta2 = group['betas']
|
||||
|
||||
state['step'] += 1
|
||||
bias_correction1 = 1 - beta1 ** state['step']
|
||||
bias_correction2 = 1 - beta2 ** state['step']
|
||||
|
||||
# Decay the first and second moment running average coefficient
|
||||
exp_avg.mul_(beta1).add_(1 - beta1, grad)
|
||||
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
|
||||
if amsgrad:
|
||||
# Maintains the maximum of all 2nd moment running avg. till now
|
||||
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
|
||||
# Use the max. for normalizing running avg. of gradient
|
||||
denom = (max_exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
|
||||
else:
|
||||
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
|
||||
|
||||
step_size = group['lr'] / bias_correction1
|
||||
|
||||
p.data.addcdiv_(-step_size, exp_avg, denom)
|
||||
|
||||
return loss
|
@ -0,0 +1,88 @@
|
||||
""" Lookahead Optimizer Wrapper.
|
||||
Implementation modified from: https://github.com/alphadl/lookahead.pytorch
|
||||
Paper: `Lookahead Optimizer: k steps forward, 1 step back` - https://arxiv.org/abs/1907.08610
|
||||
"""
|
||||
import torch
|
||||
from torch.optim.optimizer import Optimizer
|
||||
from collections import defaultdict
|
||||
|
||||
|
||||
class Lookahead(Optimizer):
|
||||
def __init__(self, base_optimizer, alpha=0.5, k=6):
|
||||
if not 0.0 <= alpha <= 1.0:
|
||||
raise ValueError(f'Invalid slow update rate: {alpha}')
|
||||
if not 1 <= k:
|
||||
raise ValueError(f'Invalid lookahead steps: {k}')
|
||||
self.alpha = alpha
|
||||
self.k = k
|
||||
self.base_optimizer = base_optimizer
|
||||
self.param_groups = self.base_optimizer.param_groups
|
||||
self.defaults = base_optimizer.defaults
|
||||
self.state = defaultdict(dict)
|
||||
for group in self.param_groups:
|
||||
group["step_counter"] = 0
|
||||
|
||||
def update_slow_weights(self, group):
|
||||
for fast_p in group["params"]:
|
||||
if fast_p.grad is None:
|
||||
continue
|
||||
param_state = self.state[fast_p]
|
||||
if "slow_buffer" not in param_state:
|
||||
param_state["slow_buffer"] = torch.empty_like(fast_p.data)
|
||||
param_state["slow_buffer"].copy_(fast_p.data)
|
||||
slow = param_state["slow_buffer"]
|
||||
slow.add_(self.alpha, fast_p.data - slow)
|
||||
fast_p.data.copy_(slow)
|
||||
|
||||
def sync_lookahead(self):
|
||||
for group in self.param_groups:
|
||||
self.update_slow_weights(group)
|
||||
|
||||
def step(self, closure=None):
|
||||
loss = self.base_optimizer.step(closure)
|
||||
for group in self.param_groups:
|
||||
group['step_counter'] += 1
|
||||
if group['step_counter'] % self.k == 0:
|
||||
self.update_slow_weights(group)
|
||||
return loss
|
||||
|
||||
def state_dict(self):
|
||||
fast_state_dict = self.base_optimizer.state_dict()
|
||||
slow_state = {
|
||||
(id(k) if isinstance(k, torch.Tensor) else k): v
|
||||
for k, v in self.state.items()
|
||||
}
|
||||
fast_state = fast_state_dict["state"]
|
||||
param_groups = fast_state_dict["param_groups"]
|
||||
return {
|
||||
"state": fast_state,
|
||||
"slow_state": slow_state,
|
||||
"param_groups": param_groups,
|
||||
}
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
if 'slow_state' not in state_dict:
|
||||
print('Loading state_dict from optimizer without Lookahead applied')
|
||||
state_dict['slow_state'] = defaultdict(dict)
|
||||
slow_state_dict = {
|
||||
"state": state_dict["slow_state"],
|
||||
"param_groups": state_dict["param_groups"],
|
||||
}
|
||||
fast_state_dict = {
|
||||
"state": state_dict["state"],
|
||||
"param_groups": state_dict["param_groups"],
|
||||
}
|
||||
super(Lookahead, self).load_state_dict(slow_state_dict)
|
||||
self.base_optimizer.load_state_dict(fast_state_dict)
|
||||
|
||||
def add_param_group(self, param_group):
|
||||
r"""Add a param group to the :class:`Optimizer` s `param_groups`.
|
||||
This can be useful when fine tuning a pre-trained network as frozen
|
||||
layers can be made trainable and added to the :class:`Optimizer` as
|
||||
training progresses.
|
||||
Args:
|
||||
param_group (dict): Specifies what Tensors should be optimized along
|
||||
with group specific optimization options.
|
||||
"""
|
||||
param_group['step_counter'] = 0
|
||||
self.base_optimizer.add_param_group(param_group)
|
@ -0,0 +1,77 @@
|
||||
"""NovoGrad Optimizer.
|
||||
Original impl by Masashi Kimura (Convergence Lab): https://github.com/convergence-lab/novograd
|
||||
Paper: `Stochastic Gradient Methods with Layer-wise Adaptive Moments for Training of Deep Networks`
|
||||
- https://arxiv.org/abs/1905.11286
|
||||
"""
|
||||
|
||||
import torch
|
||||
from torch.optim.optimizer import Optimizer
|
||||
import math
|
||||
|
||||
|
||||
class NovoGrad(Optimizer):
|
||||
def __init__(self, params, grad_averaging=False, lr=0.1, betas=(0.95, 0.98), eps=1e-8, weight_decay=0):
|
||||
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
|
||||
super(NovoGrad, self).__init__(params, defaults)
|
||||
self._lr = lr
|
||||
self._beta1 = betas[0]
|
||||
self._beta2 = betas[1]
|
||||
self._eps = eps
|
||||
self._wd = weight_decay
|
||||
self._grad_averaging = grad_averaging
|
||||
|
||||
self._momentum_initialized = False
|
||||
|
||||
def step(self, closure=None):
|
||||
loss = None
|
||||
if closure is not None:
|
||||
loss = closure()
|
||||
|
||||
if not self._momentum_initialized:
|
||||
for group in self.param_groups:
|
||||
for p in group['params']:
|
||||
if p.grad is None:
|
||||
continue
|
||||
state = self.state[p]
|
||||
grad = p.grad.data
|
||||
if grad.is_sparse:
|
||||
raise RuntimeError('NovoGrad does not support sparse gradients')
|
||||
|
||||
v = torch.norm(grad)**2
|
||||
m = grad/(torch.sqrt(v) + self._eps) + self._wd * p.data
|
||||
state['step'] = 0
|
||||
state['v'] = v
|
||||
state['m'] = m
|
||||
state['grad_ema'] = None
|
||||
self._momentum_initialized = True
|
||||
|
||||
for group in self.param_groups:
|
||||
for p in group['params']:
|
||||
if p.grad is None:
|
||||
continue
|
||||
state = self.state[p]
|
||||
state['step'] += 1
|
||||
|
||||
step, v, m = state['step'], state['v'], state['m']
|
||||
grad_ema = state['grad_ema']
|
||||
|
||||
grad = p.grad.data
|
||||
g2 = torch.norm(grad)**2
|
||||
grad_ema = g2 if grad_ema is None else grad_ema * \
|
||||
self._beta2 + g2 * (1. - self._beta2)
|
||||
grad *= 1.0 / (torch.sqrt(grad_ema) + self._eps)
|
||||
|
||||
if self._grad_averaging:
|
||||
grad *= (1. - self._beta1)
|
||||
|
||||
g2 = torch.norm(grad)**2
|
||||
v = self._beta2*v + (1. - self._beta2)*g2
|
||||
m = self._beta1*m + (grad / (torch.sqrt(v) + self._eps) + self._wd * p.data)
|
||||
bias_correction1 = 1 - self._beta1 ** step
|
||||
bias_correction2 = 1 - self._beta2 ** step
|
||||
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
|
||||
|
||||
state['v'], state['m'] = v, m
|
||||
state['grad_ema'] = grad_ema
|
||||
p.data.add_(-step_size, m)
|
||||
return loss
|
@ -0,0 +1,152 @@
|
||||
"""RAdam Optimizer.
|
||||
Implementation lifted from: https://github.com/LiyuanLucasLiu/RAdam
|
||||
Paper: `On the Variance of the Adaptive Learning Rate and Beyond` - https://arxiv.org/abs/1908.03265
|
||||
"""
|
||||
import math
|
||||
import torch
|
||||
from torch.optim.optimizer import Optimizer, required
|
||||
|
||||
|
||||
class RAdam(Optimizer):
|
||||
|
||||
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
|
||||
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
|
||||
self.buffer = [[None, None, None] for ind in range(10)]
|
||||
super(RAdam, self).__init__(params, defaults)
|
||||
|
||||
def __setstate__(self, state):
|
||||
super(RAdam, self).__setstate__(state)
|
||||
|
||||
def step(self, closure=None):
|
||||
|
||||
loss = None
|
||||
if closure is not None:
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
|
||||
for p in group['params']:
|
||||
if p.grad is None:
|
||||
continue
|
||||
grad = p.grad.data.float()
|
||||
if grad.is_sparse:
|
||||
raise RuntimeError('RAdam does not support sparse gradients')
|
||||
|
||||
p_data_fp32 = p.data.float()
|
||||
|
||||
state = self.state[p]
|
||||
|
||||
if len(state) == 0:
|
||||
state['step'] = 0
|
||||
state['exp_avg'] = torch.zeros_like(p_data_fp32)
|
||||
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
|
||||
else:
|
||||
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
|
||||
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
|
||||
|
||||
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
||||
beta1, beta2 = group['betas']
|
||||
|
||||
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
|
||||
exp_avg.mul_(beta1).add_(1 - beta1, grad)
|
||||
|
||||
state['step'] += 1
|
||||
buffered = self.buffer[int(state['step'] % 10)]
|
||||
if state['step'] == buffered[0]:
|
||||
N_sma, step_size = buffered[1], buffered[2]
|
||||
else:
|
||||
buffered[0] = state['step']
|
||||
beta2_t = beta2 ** state['step']
|
||||
N_sma_max = 2 / (1 - beta2) - 1
|
||||
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
|
||||
buffered[1] = N_sma
|
||||
|
||||
# more conservative since it's an approximated value
|
||||
if N_sma >= 5:
|
||||
step_size = group['lr'] * math.sqrt(
|
||||
(1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (
|
||||
N_sma_max - 2)) / (1 - beta1 ** state['step'])
|
||||
else:
|
||||
step_size = group['lr'] / (1 - beta1 ** state['step'])
|
||||
buffered[2] = step_size
|
||||
|
||||
if group['weight_decay'] != 0:
|
||||
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
|
||||
|
||||
# more conservative since it's an approximated value
|
||||
if N_sma >= 5:
|
||||
denom = exp_avg_sq.sqrt().add_(group['eps'])
|
||||
p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
|
||||
else:
|
||||
p_data_fp32.add_(-step_size, exp_avg)
|
||||
|
||||
p.data.copy_(p_data_fp32)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
class PlainRAdam(Optimizer):
|
||||
|
||||
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
|
||||
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
|
||||
|
||||
super(PlainRAdam, self).__init__(params, defaults)
|
||||
|
||||
def __setstate__(self, state):
|
||||
super(PlainRAdam, self).__setstate__(state)
|
||||
|
||||
def step(self, closure=None):
|
||||
|
||||
loss = None
|
||||
if closure is not None:
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
|
||||
for p in group['params']:
|
||||
if p.grad is None:
|
||||
continue
|
||||
grad = p.grad.data.float()
|
||||
if grad.is_sparse:
|
||||
raise RuntimeError('RAdam does not support sparse gradients')
|
||||
|
||||
p_data_fp32 = p.data.float()
|
||||
|
||||
state = self.state[p]
|
||||
|
||||
if len(state) == 0:
|
||||
state['step'] = 0
|
||||
state['exp_avg'] = torch.zeros_like(p_data_fp32)
|
||||
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
|
||||
else:
|
||||
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
|
||||
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
|
||||
|
||||
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
||||
beta1, beta2 = group['betas']
|
||||
|
||||
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
|
||||
exp_avg.mul_(beta1).add_(1 - beta1, grad)
|
||||
|
||||
state['step'] += 1
|
||||
beta2_t = beta2 ** state['step']
|
||||
N_sma_max = 2 / (1 - beta2) - 1
|
||||
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
|
||||
|
||||
if group['weight_decay'] != 0:
|
||||
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
|
||||
|
||||
# more conservative since it's an approximated value
|
||||
if N_sma >= 5:
|
||||
step_size = group['lr'] * math.sqrt(
|
||||
(1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (
|
||||
N_sma_max - 2)) / (1 - beta1 ** state['step'])
|
||||
denom = exp_avg_sq.sqrt().add_(group['eps'])
|
||||
p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
|
||||
else:
|
||||
step_size = group['lr'] / (1 - beta1 ** state['step'])
|
||||
p_data_fp32.add_(-step_size, exp_avg)
|
||||
|
||||
p.data.copy_(p_data_fp32)
|
||||
|
||||
return loss
|
Loading…
Reference in new issue