|
|
|
@ -146,20 +146,24 @@ class Block(nn.Module):
|
|
|
|
|
class PatchEmbed(nn.Module):
|
|
|
|
|
""" Image to Patch Embedding
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
|
|
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, img_width=None, img_height=None, patch_width=None, patch_height=None):
|
|
|
|
|
super().__init__()
|
|
|
|
|
img_size = to_2tuple(img_size)
|
|
|
|
|
patch_size = to_2tuple(patch_size)
|
|
|
|
|
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
|
|
|
|
self.img_size = img_size
|
|
|
|
|
self.patch_size = patch_size
|
|
|
|
|
self.num_patches = num_patches
|
|
|
|
|
if not img_width:
|
|
|
|
|
img_width = img_size
|
|
|
|
|
if not img_height:
|
|
|
|
|
img_height = img_height
|
|
|
|
|
if not patch_width:
|
|
|
|
|
patch_width = patch_size
|
|
|
|
|
if not patch_height:
|
|
|
|
|
patch_height = patch_size
|
|
|
|
|
self.img_size = (img_height, img_width)
|
|
|
|
|
self.patch_size = (patch_height, patch_width)
|
|
|
|
|
self.num_patches = (img_width // patch_width) * (img_height // patch_height)
|
|
|
|
|
|
|
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
B, C, H, W = x.shape
|
|
|
|
|
# FIXME look at relaxing size constraints
|
|
|
|
|
assert H == self.img_size[0] and W == self.img_size[1], \
|
|
|
|
|
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
|
|
|
|
x = self.proj(x).flatten(2).transpose(1, 2)
|
|
|
|
|