Add MobileNetV3 and associated changes hard-swish, hard-sigmoid, efficient head, etc

pull/1/head
Ross Wightman 6 years ago
parent 02abeb95bf
commit db056d97e2

@ -33,6 +33,7 @@ I've included a few of my favourite models, but this is not an exhaustive collec
* MNASNet B1, A1 (Squeeze-Excite), and Small
* MobileNet-V1
* MobileNet-V2
* MobileNet-V3 (work in progress, validating config)
* ChamNet (details hard to find, currently an educated guess)
* FBNet-C (TODO A/B variants)
## Features

@ -2,7 +2,7 @@
A generic MobileNet class with building blocks to support a variety of models:
* MNasNet B1, A1 (SE), Small
* MobileNetV2
* MobileNet V1, V2, and V3 (work in progress)
* FBNet-C (TODO A & B)
* ChamNet (TODO still guessing at architecture definition)
* Single-Path NAS Pixel1
@ -26,10 +26,10 @@ from models.adaptive_avgmax_pool import SelectAdaptivePool2d
from models.conv2d_same import sconv2d
from data.transforms import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
__all__ = ['GenMobileNet', 'mnasnet0_50', 'mnasnet0_75', 'mnasnet1_00', 'mnasnet1_40',
'semnasnet0_50', 'semnasnet0_75', 'semnasnet1_00', 'semnasnet1_40', 'mnasnet_small',
'mobilenetv1_1_00', 'mobilenetv2_1_00', 'chamnetv1_1_00', 'chamnetv2_1_00',
'fbnetc_1_00', 'spnasnet1_00']
__all__ = ['GenMobileNet', 'mnasnet_050', 'mnasnet_075', 'mnasnet_100', 'mnasnet_140',
'semnasnet_050', 'semnasnet_075', 'semnasnet_100', 'semnasnet_140', 'mnasnet_small',
'mobilenetv1_100', 'mobilenetv2_100', 'mobilenetv3_050', 'mobilenetv3_075', 'mobilenetv3_100',
'chamnetv1_100', 'chamnetv2_100', 'fbnetc_100', 'spnasnet_100']
def _cfg(url='', **kwargs):
@ -43,25 +43,28 @@ def _cfg(url='', **kwargs):
default_cfgs = {
'mnasnet0_50': _cfg(url=''),
'mnasnet0_75': _cfg(url=''),
'mnasnet1_00': _cfg(url=''),
'tflite_mnasnet1_00': _cfg(url='https://www.dropbox.com/s/q55ir3tx8mpeyol/tflite_mnasnet1_00-31639cdc.pth?dl=1',
'mnasnet_050': _cfg(url=''),
'mnasnet_075': _cfg(url=''),
'mnasnet_100': _cfg(url=''),
'tflite_mnasnet_100': _cfg(url='https://www.dropbox.com/s/q55ir3tx8mpeyol/tflite_mnasnet_100-31639cdc.pth?dl=1',
interpolation='bicubic'),
'mnasnet1_40': _cfg(url=''),
'semnasnet0_50': _cfg(url=''),
'semnasnet0_75': _cfg(url=''),
'semnasnet1_00': _cfg(url=''),
'tflite_semnasnet1_00': _cfg(url='https://www.dropbox.com/s/yiori47sr9dydev/tflite_semnasnet1_00-7c780429.pth?dl=1',
'mnasnet_140': _cfg(url=''),
'semnasnet_050': _cfg(url=''),
'semnasnet_075': _cfg(url=''),
'semnasnet_100': _cfg(url=''),
'tflite_semnasnet_100': _cfg(url='https://www.dropbox.com/s/yiori47sr9dydev/tflite_semnasnet_100-7c780429.pth?dl=1',
interpolation='bicubic'),
'semnasnet1_40': _cfg(url=''),
'semnasnet_140': _cfg(url=''),
'mnasnet_small': _cfg(url=''),
'mobilenetv1_1_00': _cfg(url=''),
'mobilenetv2_1_00': _cfg(url=''),
'chamnetv1_1_00': _cfg(url=''),
'chamnetv2_1_00': _cfg(url=''),
'fbnetc_1_00': _cfg(url=''),
'spnasnet1_00': _cfg(url='https://www.dropbox.com/s/iieopt18rytkgaa/spnasnet1_00-048bc3f4.pth?dl=1'),
'mobilenetv1_100': _cfg(url=''),
'mobilenetv2_100': _cfg(url=''),
'mobilenetv3_050': _cfg(url=''),
'mobilenetv3_075': _cfg(url=''),
'mobilenetv3_100': _cfg(url=''),
'chamnetv1_100': _cfg(url=''),
'chamnetv2_100': _cfg(url=''),
'fbnetc_100': _cfg(url=''),
'spnasnet_100': _cfg(url='https://www.dropbox.com/s/iieopt18rytkgaa/spnasnet_100-048bc3f4.pth?dl=1'),
}
_DEBUG = True
@ -130,6 +133,7 @@ def _decode_block_str(block_str):
e - expansion ratio,
c - output channels,
se - squeeze/excitation ratio
a - activation fn ('re', 'r6', or 'hs')
Args:
block_str: a string representation of block arguments.
Returns:
@ -142,13 +146,33 @@ def _decode_block_str(block_str):
block_type = ops[0] # take the block type off the front
ops = ops[1:]
options = {}
noskip = False
for op in ops:
splits = re.split(r'(\d.*)', op)
if len(splits) >= 2:
key, value = splits[:2]
# string options being checked on individual basis, combine if they grow
if op.startswith('a'):
# activation fn
key = op[0]
v = op[1:]
if v == 're':
value = F.relu
elif v == 'r6':
value = F.relu6
elif v == 'hs':
value = hard_swish
else:
continue
options[key] = value
elif op == 'noskip':
noskip = True
else:
# all numeric options
splits = re.split(r'(\d.*)', op)
if len(splits) >= 2:
key, value = splits[:2]
options[key] = value
# FIXME validate args and throw
# if act_fn is None, the model default (passed to model init) will be used
act_fn = options['a'] if 'a' in options else None
num_repeat = int(options['r'])
# each type of block has different valid arguments, fill accordingly
@ -157,10 +181,11 @@ def _decode_block_str(block_str):
block_type=block_type,
kernel_size=int(options['k']),
out_chs=int(options['c']),
exp_ratio=int(options['e']),
exp_ratio=float(options['e']),
se_ratio=float(options['se']) if 'se' in options else None,
stride=int(options['s']),
noskip=('noskip' in block_str),
act_fn=act_fn,
noskip=noskip,
)
if 'g' in options:
block_args['pw_group'] = options['g']
@ -169,9 +194,11 @@ def _decode_block_str(block_str):
elif block_type == 'ca':
block_args = dict(
block_type=block_type,
kernel_size=int(options['k']),
out_chs=int(options['c']),
stride=int(options['s']),
noskip=('noskip' in block_str),
act_fn=act_fn,
noskip=noskip,
)
elif block_type == 'ds' or block_type == 'dsa':
block_args = dict(
@ -179,9 +206,18 @@ def _decode_block_str(block_str):
kernel_size=int(options['k']),
out_chs=int(options['c']),
stride=int(options['s']),
noskip=block_type == 'dsa' or 'noskip' in block_str,
act_fn=act_fn,
noskip=block_type == 'dsa' or noskip,
pw_act=block_type == 'dsa',
)
elif block_type == 'cn':
block_args = dict(
block_type=block_type,
kernel_size=int(options['k']),
out_chs=int(options['c']),
stride=int(options['s']),
act_fn=act_fn,
)
else:
assert False, 'Unknown block type (%s)' % block_type
@ -228,11 +264,15 @@ class _BlockBuilder:
"""
def __init__(self, depth_multiplier=1.0, depth_divisor=8, min_depth=None,
act_fn=None, se_gate_fn=torch.sigmoid, se_reduce_mid=False,
bn_momentum=_BN_MOMENTUM_PT_DEFAULT, bn_eps=_BN_EPS_PT_DEFAULT,
folded_bn=False, padding_same=False):
self.depth_multiplier = depth_multiplier
self.depth_divisor = depth_divisor
self.min_depth = min_depth
self.act_fn = act_fn
self.se_gate_fn = se_gate_fn
self.se_reduce_mid = se_reduce_mid
self.bn_momentum = bn_momentum
self.bn_eps = bn_eps
self.folded_bn = folded_bn
@ -250,15 +290,21 @@ class _BlockBuilder:
ba['bn_eps'] = self.bn_eps
ba['folded_bn'] = self.folded_bn
ba['padding_same'] = self.padding_same
ba['act_fn'] = ba['act_fn'] if ba['act_fn'] is not None else self.act_fn
assert ba['act_fn'] is not None
if _DEBUG:
print('args:', ba)
# could replace this with lambdas or functools binding if variety increases
# could replace this if with lambdas or functools binding if variety increases
if bt == 'ir':
ba['se_gate_fn'] = self.se_gate_fn
ba['se_reduce_mid'] = self.se_reduce_mid
block = InvertedResidual(**ba)
elif bt == 'ds' or bt == 'dsa':
block = DepthwiseSeparableConv(**ba)
elif bt == 'ca':
block = CascadeConv3x3(**ba)
block = CascadeConv(**ba)
elif bt == 'cn':
block = ConvBnAct(**ba)
else:
assert False, 'Uknkown block type (%s) while building model.' % bt
self.in_chs = ba['out_chs'] # update in_chs for arg of next block
@ -331,6 +377,37 @@ def _initialize_weight_default(m):
nn.init.kaiming_uniform_(m.weight, mode='fan_in', nonlinearity='linear')
def hard_swish(x):
return x * F.relu6(x + 3.) / 6.
def hard_sigmoid(x):
return F.relu6(x + 3.) / 6.
class ConvBnAct(nn.Module):
def __init__(self, in_chs, out_chs, kernel_size,
stride=1, act_fn=F.relu,
bn_momentum=_BN_MOMENTUM_PT_DEFAULT, bn_eps=_BN_EPS_PT_DEFAULT,
folded_bn=False, padding_same=False):
super(ConvBnAct, self).__init__()
assert stride in [1, 2]
self.act_fn = act_fn
padding = _padding_arg(_get_padding(kernel_size, stride), padding_same)
self.conv = sconv2d(
in_chs, out_chs, kernel_size,
stride=stride, padding=padding, bias=folded_bn)
self.bn1 = None if folded_bn else nn.BatchNorm2d(out_chs, momentum=bn_momentum, eps=bn_eps)
def forward(self, x):
x = self.conv(x)
if self.bn1 is not None:
x = self.bn1(x)
x = self.act_fn(x)
return x
class DepthwiseSeparableConv(nn.Module):
def __init__(self, in_chs, out_chs, kernel_size,
stride=1, act_fn=F.relu, noskip=False, pw_act=False,
@ -370,20 +447,20 @@ class DepthwiseSeparableConv(nn.Module):
return x
class CascadeConv3x3(nn.Sequential):
# FIXME lifted from maskrcnn_benchmark blocks, haven't used yet
def __init__(self, in_chs, out_chs, stride, act_fn=F.relu, noskip=False,
class CascadeConv(nn.Sequential):
# FIXME haven't used yet
def __init__(self, in_chs, out_chs, kernel_size=3, stride=2, act_fn=F.relu, noskip=False,
bn_momentum=_BN_MOMENTUM_PT_DEFAULT, bn_eps=_BN_EPS_PT_DEFAULT,
folded_bn=False, padding_same=False):
super(CascadeConv3x3, self).__init__()
super(CascadeConv, self).__init__()
assert stride in [1, 2]
self.has_residual = (stride == 1 and in_chs == out_chs) and not noskip
self.act_fn = act_fn
padding = _padding_arg(1, padding_same)
self.conv1 = sconv2d(in_chs, in_chs, 3, stride=stride, padding=padding, bias=folded_bn)
self.conv1 = sconv2d(in_chs, in_chs, kernel_size, stride=stride, padding=padding, bias=folded_bn)
self.bn1 = None if folded_bn else nn.BatchNorm2d(in_chs, momentum=bn_momentum, eps=bn_eps)
self.conv2 = sconv2d(in_chs, out_chs, 3, stride=1, padding=padding, bias=folded_bn)
self.conv2 = sconv2d(in_chs, out_chs, kernel_size, stride=1, padding=padding, bias=folded_bn)
self.bn2 = None if folded_bn else nn.BatchNorm2d(out_chs, momentum=bn_momentum, eps=bn_eps)
def forward(self, x):
@ -401,7 +478,7 @@ class CascadeConv3x3(nn.Sequential):
class ChannelShuffle(nn.Module):
# FIXME lifted from maskrcnn_benchmark blocks, haven't used yet
# FIXME haven't used yet
def __init__(self, groups):
super(ChannelShuffle, self).__init__()
self.groups = groups
@ -422,9 +499,10 @@ class ChannelShuffle(nn.Module):
class SqueezeExcite(nn.Module):
def __init__(self, in_chs, reduce_chs=None, act_fn=F.relu):
def __init__(self, in_chs, reduce_chs=None, act_fn=F.relu, gate_fn=torch.sigmoid):
super(SqueezeExcite, self).__init__()
self.act_fn = act_fn
self.gate_fn = gate_fn
reduced_chs = reduce_chs or in_chs
self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True)
self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True)
@ -435,7 +513,7 @@ class SqueezeExcite(nn.Module):
x_se = self.conv_reduce(x_se)
x_se = self.act_fn(x_se)
x_se = self.conv_expand(x_se)
x = torch.sigmoid(x_se) * x
x = self.gate_fn(x_se) * x
return x
@ -444,7 +522,8 @@ class InvertedResidual(nn.Module):
def __init__(self, in_chs, out_chs, kernel_size,
stride=1, act_fn=F.relu, exp_ratio=1.0, noskip=False,
se_ratio=0., shuffle_type=None, pw_group=1,
se_ratio=0., se_reduce_mid=False, se_gate_fn=torch.sigmoid,
shuffle_type=None, pw_group=1,
bn_momentum=_BN_MOMENTUM_PT_DEFAULT, bn_eps=_BN_EPS_PT_DEFAULT,
folded_bn=False, padding_same=False):
super(InvertedResidual, self).__init__()
@ -470,7 +549,9 @@ class InvertedResidual(nn.Module):
# Squeeze-and-excitation
if self.has_se:
self.se = SqueezeExcite(mid_chs, reduce_chs=max(1, int(in_chs * se_ratio)))
reduce_mult = mid_chs if se_reduce_mid else in_chs
self.se = SqueezeExcite(mid_chs, reduce_chs=max(1, int(reduce_mult * se_ratio)),
act_fn=act_fn, gate_fn=se_gate_fn)
# Point-wise linear projection
self.conv_pwl = sconv2d(mid_chs, out_chs, 1, padding=pw_padding, groups=pw_group, bias=folded_bn)
@ -519,6 +600,7 @@ class GenMobileNet(nn.Module):
An implementation of mobile optimized networks that covers:
* MobileNet-V1
* MobileNet-V2
* MobileNet-V3
* MNASNet A1, B1, and small
* FBNet A, B, and C
* ChamNet (arch details are murky)
@ -528,7 +610,8 @@ class GenMobileNet(nn.Module):
def __init__(self, block_args, num_classes=1000, in_chans=3, stem_size=32, num_features=1280,
depth_multiplier=1.0, depth_divisor=8, min_depth=None,
bn_momentum=_BN_MOMENTUM_PT_DEFAULT, bn_eps=_BN_EPS_PT_DEFAULT,
drop_rate=0., act_fn=F.relu, global_pool='avg', skip_head_conv=False,
drop_rate=0., act_fn=F.relu, se_gate_fn=torch.sigmoid, se_reduce_mid=False,
global_pool='avg', skip_head_conv=False, efficient_head=False,
weight_init='goog', folded_bn=False, padding_same=False):
super(GenMobileNet, self).__init__()
self.num_classes = num_classes
@ -536,6 +619,7 @@ class GenMobileNet(nn.Module):
self.drop_rate = drop_rate
self.act_fn = act_fn
self.num_features = num_features
self.efficient_head = efficient_head # pool before last conv
stem_size = _round_channels(stem_size, depth_multiplier, depth_divisor, min_depth)
self.conv_stem = sconv2d(
@ -545,7 +629,7 @@ class GenMobileNet(nn.Module):
in_chs = stem_size
builder = _BlockBuilder(
depth_multiplier, depth_divisor, min_depth,
depth_multiplier, depth_divisor, min_depth, act_fn, se_gate_fn, se_reduce_mid,
bn_momentum, bn_eps, folded_bn, padding_same)
self.blocks = nn.Sequential(*builder(in_chs, block_args))
in_chs = builder.in_chs
@ -556,8 +640,9 @@ class GenMobileNet(nn.Module):
else:
self.conv_head = sconv2d(
in_chs, self.num_features, 1,
padding=_padding_arg(0, padding_same), bias=folded_bn)
self.bn2 = None if folded_bn else nn.BatchNorm2d(self.num_features, momentum=bn_momentum, eps=bn_eps)
padding=_padding_arg(0, padding_same), bias=folded_bn and not efficient_head)
self.bn2 = None if (folded_bn or efficient_head) else \
nn.BatchNorm2d(self.num_features, momentum=bn_momentum, eps=bn_eps)
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.classifier = nn.Linear(self.num_features, self.num_classes)
@ -587,14 +672,23 @@ class GenMobileNet(nn.Module):
x = self.bn1(x)
x = self.act_fn(x)
x = self.blocks(x)
if self.conv_head is not None:
if self.efficient_head:
# efficient head, currently only mobilenet-v3 performs pool before last 1x1 conv
x = self.global_pool(x) # always need to pool here regardless of bool
x = self.conv_head(x)
if self.bn2 is not None:
x = self.bn2(x)
x = self.act_fn(x)
if pool:
x = self.global_pool(x)
x = x.view(x.size(0), -1)
if pool:
# expect flattened output if pool is true, otherwise keep dim
x = x.view(x.size(0), -1)
else:
if self.conv_head is not None:
x = self.conv_head(x)
if self.bn2 is not None:
x = self.bn2(x)
x = self.act_fn(x)
if pool:
x = self.global_pool(x)
x = x.view(x.size(0), -1)
return x
def forward(self, x):
@ -777,6 +871,52 @@ def _gen_mobilenet_v2(depth_multiplier, num_classes=1000, **kwargs):
return model
def _gen_mobilenet_v3(depth_multiplier, num_classes=1000, **kwargs):
"""Creates a MobileNet-V3 model.
Ref impl: ?
Paper: https://arxiv.org/abs/1905.02244
Args:
depth_multiplier: multiplier to number of channels per layer.
"""
arch_def = [
# stage 0, 112x112 in
['ds_r1_k3_s1_e1_c16_are_noskip'], # relu
# stage 1, 112x112 in
['ir_r1_k3_s2_e4_c24_are', 'ir_r1_k3_s1_e6_c24_are'], # relu
# stage 2, 56x56 in
['ir_r3_k5_s2_e3_c40_se0.25_are'], # relu
# stage 3, 28x28 in
# FIXME are expansions here correct?
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], # hard-swish
# stage 4, 14x14in
['ir_r2_k3_s1_e6_c112_se0.25'], # hard-swish
# stage 5, 14x14in
# FIXME the paper contains a weird block-stride pattern 1-2-1 that doesn't fit the usual 2-1-...
# What is correct?
['ir_r3_k5_s2_e6_c160_se0.25'], # hard-swish
# stage 6, 7x7 in
['cn_r1_k1_s1_c960'], # hard-swish
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
arch_def,
num_classes=num_classes,
stem_size=16,
depth_multiplier=depth_multiplier,
depth_divisor=8,
min_depth=None,
bn_momentum=bn_momentum,
bn_eps=bn_eps,
act_fn=hard_swish,
se_gate_fn=hard_sigmoid,
se_reduce_mid=True,
**kwargs
)
return model
def _gen_chamnet_v1(depth_multiplier, num_classes=1000, **kwargs):
""" Generate Chameleon Network (ChamNet)
@ -916,9 +1056,9 @@ def _gen_spnasnet(depth_multiplier, num_classes=1000, **kwargs):
return model
def mnasnet0_50(num_classes=1000, in_chans=3, pretrained=False, **kwargs):
def mnasnet_050(num_classes=1000, in_chans=3, pretrained=False, **kwargs):
""" MNASNet B1, depth multiplier of 0.5. """
default_cfg = default_cfgs['mnasnet0_50']
default_cfg = default_cfgs['mnasnet_050']
model = _gen_mnasnet_b1(0.5, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
@ -926,9 +1066,9 @@ def mnasnet0_50(num_classes=1000, in_chans=3, pretrained=False, **kwargs):
return model
def mnasnet0_75(num_classes, in_chans=3, pretrained=False, **kwargs):
def mnasnet_075(num_classes, in_chans=3, pretrained=False, **kwargs):
""" MNASNet B1, depth multiplier of 0.75. """
default_cfg = default_cfgs['mnasnet0_75']
default_cfg = default_cfgs['mnasnet_075']
model = _gen_mnasnet_b1(0.75, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
@ -936,9 +1076,9 @@ def mnasnet0_75(num_classes, in_chans=3, pretrained=False, **kwargs):
return model
def mnasnet1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
def mnasnet_100(num_classes, in_chans=3, pretrained=False, **kwargs):
""" MNASNet B1, depth multiplier of 1.0. """
default_cfg = default_cfgs['mnasnet1_00']
default_cfg = default_cfgs['mnasnet_100']
model = _gen_mnasnet_b1(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
@ -946,9 +1086,9 @@ def mnasnet1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
return model
def tflite_mnasnet1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
def tflite_mnasnet_100(num_classes, in_chans=3, pretrained=False, **kwargs):
""" MNASNet B1, depth multiplier of 1.0. """
default_cfg = default_cfgs['tflite_mnasnet1_00']
default_cfg = default_cfgs['tflite_mnasnet_100']
# these two args are for compat with tflite pretrained weights
kwargs['folded_bn'] = True
kwargs['padding_same'] = True
@ -959,9 +1099,9 @@ def tflite_mnasnet1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
return model
def mnasnet1_40(num_classes, in_chans=3, pretrained=False, **kwargs):
def mnasnet_140(num_classes, in_chans=3, pretrained=False, **kwargs):
""" MNASNet B1, depth multiplier of 1.4 """
default_cfg = default_cfgs['mnasnet1_40']
default_cfg = default_cfgs['mnasnet_140']
model = _gen_mnasnet_b1(1.4, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
@ -969,9 +1109,9 @@ def mnasnet1_40(num_classes, in_chans=3, pretrained=False, **kwargs):
return model
def semnasnet0_50(num_classes=1000, in_chans=3, pretrained=False, **kwargs):
def semnasnet_050(num_classes=1000, in_chans=3, pretrained=False, **kwargs):
""" MNASNet A1 (w/ SE), depth multiplier of 0.5 """
default_cfg = default_cfgs['semnasnet0_50']
default_cfg = default_cfgs['semnasnet_050']
model = _gen_mnasnet_a1(0.5, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
@ -979,9 +1119,9 @@ def semnasnet0_50(num_classes=1000, in_chans=3, pretrained=False, **kwargs):
return model
def semnasnet0_75(num_classes, in_chans=3, pretrained=False, **kwargs):
def semnasnet_075(num_classes, in_chans=3, pretrained=False, **kwargs):
""" MNASNet A1 (w/ SE), depth multiplier of 0.75. """
default_cfg = default_cfgs['semnasnet0_75']
default_cfg = default_cfgs['semnasnet_075']
model = _gen_mnasnet_a1(0.75, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
@ -989,9 +1129,9 @@ def semnasnet0_75(num_classes, in_chans=3, pretrained=False, **kwargs):
return model
def semnasnet1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
def semnasnet_100(num_classes, in_chans=3, pretrained=False, **kwargs):
""" MNASNet A1 (w/ SE), depth multiplier of 1.0. """
default_cfg = default_cfgs['semnasnet1_00']
default_cfg = default_cfgs['semnasnet_100']
model = _gen_mnasnet_a1(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
@ -999,9 +1139,9 @@ def semnasnet1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
return model
def tflite_semnasnet1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
def tflite_semnasnet_100(num_classes, in_chans=3, pretrained=False, **kwargs):
""" MNASNet A1, depth multiplier of 1.0. """
default_cfg = default_cfgs['tflite_semnasnet1_00']
default_cfg = default_cfgs['tflite_semnasnet_100']
# these two args are for compat with tflite pretrained weights
kwargs['folded_bn'] = True
kwargs['padding_same'] = True
@ -1012,9 +1152,9 @@ def tflite_semnasnet1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
return model
def semnasnet1_40(num_classes, in_chans=3, pretrained=False, **kwargs):
def semnasnet_140(num_classes, in_chans=3, pretrained=False, **kwargs):
""" MNASNet A1 (w/ SE), depth multiplier of 1.4. """
default_cfg = default_cfgs['semnasnet1_40']
default_cfg = default_cfgs['semnasnet_140']
model = _gen_mnasnet_a1(1.4, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
@ -1032,9 +1172,9 @@ def mnasnet_small(num_classes, in_chans=3, pretrained=False, **kwargs):
return model
def mobilenetv1_1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
def mobilenetv1_100(num_classes, in_chans=3, pretrained=False, **kwargs):
""" MobileNet V1 """
default_cfg = default_cfgs['mobilenetv1_1_00']
default_cfg = default_cfgs['mobilenetv1_100']
model = _gen_mobilenet_v1(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
@ -1042,9 +1182,9 @@ def mobilenetv1_1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
return model
def mobilenetv2_1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
def mobilenetv2_100(num_classes, in_chans=3, pretrained=False, **kwargs):
""" MobileNet V2 """
default_cfg = default_cfgs['mobilenetv2_1_00']
default_cfg = default_cfgs['mobilenetv2_100']
model = _gen_mobilenet_v2(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
@ -1052,9 +1192,39 @@ def mobilenetv2_1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
return model
def fbnetc_1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
def mobilenetv3_050(num_classes, in_chans=3, pretrained=False, **kwargs):
""" MobileNet V3 """
default_cfg = default_cfgs['mobilenetv3_050']
model = _gen_mobilenet_v3(0.5, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
def mobilenetv3_075(num_classes, in_chans=3, pretrained=False, **kwargs):
""" MobileNet V3 """
default_cfg = default_cfgs['mobilenetv3_075']
model = _gen_mobilenet_v3(0.75, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
def mobilenetv3_100(num_classes, in_chans=3, pretrained=False, **kwargs):
""" MobileNet V3 """
default_cfg = default_cfgs['mobilenetv3_100']
model = _gen_mobilenet_v3(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
def fbnetc_100(num_classes, in_chans=3, pretrained=False, **kwargs):
""" FBNet-C """
default_cfg = default_cfgs['fbnetc_1_00']
default_cfg = default_cfgs['fbnetc_100']
model = _gen_fbnetc(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
@ -1062,9 +1232,9 @@ def fbnetc_1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
return model
def chamnetv1_1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
def chamnetv1_100(num_classes, in_chans=3, pretrained=False, **kwargs):
""" ChamNet """
default_cfg = default_cfgs['chamnetv1_1_00']
default_cfg = default_cfgs['chamnetv1_100']
model = _gen_chamnet_v1(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
@ -1072,9 +1242,9 @@ def chamnetv1_1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
return model
def chamnetv2_1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
def chamnetv2_100(num_classes, in_chans=3, pretrained=False, **kwargs):
""" ChamNet """
default_cfg = default_cfgs['chamnetv2_1_00']
default_cfg = default_cfgs['chamnetv2_100']
model = _gen_chamnet_v2(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
@ -1082,9 +1252,9 @@ def chamnetv2_1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
return model
def spnasnet1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
def spnasnet_100(num_classes, in_chans=3, pretrained=False, **kwargs):
""" Single-Path NAS Pixel1"""
default_cfg = default_cfgs['spnasnet1_00']
default_cfg = default_cfgs['spnasnet_100']
model = _gen_spnasnet(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:

@ -9,10 +9,10 @@ from models.senet import seresnet18, seresnet34, seresnet50, seresnet101, seresn
from models.xception import xception
from models.pnasnet import pnasnet5large
from models.genmobilenet import \
mnasnet0_50, mnasnet0_75, mnasnet1_00, mnasnet1_40, tflite_mnasnet1_00,\
semnasnet0_50, semnasnet0_75, semnasnet1_00, semnasnet1_40, tflite_semnasnet1_00, mnasnet_small,\
mobilenetv1_1_00, mobilenetv2_1_00, fbnetc_1_00, chamnetv1_1_00, chamnetv2_1_00,\
spnasnet1_00
mnasnet_050, mnasnet_075, mnasnet_100, mnasnet_140, tflite_mnasnet_100,\
semnasnet_050, semnasnet_075, semnasnet_100, semnasnet_140, tflite_semnasnet_100, mnasnet_small,\
mobilenetv1_100, mobilenetv2_100, mobilenetv3_050, mobilenetv3_075, mobilenetv3_100,\
fbnetc_100, chamnetv1_100, chamnetv2_100, spnasnet_100
from models.helpers import load_checkpoint

Loading…
Cancel
Save