Merge pull request #419 from rwightman/byob_vgg_models
More models, GPU-Efficient Nets, RepVGG, classic VGG, and flexible Byob backbone.pull/425/head
commit
d8e69206be
@ -0,0 +1,739 @@
|
||||
""" Bring-Your-Own-Blocks Network
|
||||
|
||||
A flexible network w/ dataclass based config for stacking those NN blocks.
|
||||
|
||||
This model is currently used to implement the following networks:
|
||||
|
||||
GPU Efficient (ResNets) - gernet_l/m/s (original versions called genet, but this was already used (by SENet author)).
|
||||
Paper: `Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090
|
||||
Code and weights: https://github.com/idstcv/GPU-Efficient-Networks, licensed Apache 2.0
|
||||
|
||||
RepVGG - repvgg_*
|
||||
Paper: `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
|
||||
Code and weights: https://github.com/DingXiaoH/RepVGG, licensed MIT
|
||||
|
||||
In all cases the models have been modified to fit within the design of ByobNet. I've remapped
|
||||
the original weights and verified accuracies.
|
||||
|
||||
For GPU Efficient nets, I used the original names for the blocks since they were for the most part
|
||||
the same as original residual blocks in ResNe(X)t, DarkNet, and other existing models. Note also some
|
||||
changes introduced in RegNet were also present in the stem and bottleneck blocks for this model.
|
||||
|
||||
A significant number of different network archs can be implemented here, including variants of the
|
||||
above nets that include attention.
|
||||
|
||||
Hacked together by / copyright Ross Wightman, 2021.
|
||||
"""
|
||||
import math
|
||||
from dataclasses import dataclass, field
|
||||
from collections import OrderedDict
|
||||
from typing import Tuple, Dict, Optional, Union, Any, Callable
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from .helpers import build_model_with_cfg
|
||||
from .layers import ClassifierHead, ConvBnAct, DropPath, AvgPool2dSame, \
|
||||
create_conv2d, get_act_layer, get_attn, convert_norm_act, make_divisible
|
||||
from .registry import register_model
|
||||
|
||||
__all__ = ['ByobNet', 'ByobCfg', 'BlocksCfg']
|
||||
|
||||
|
||||
def _cfg(url='', **kwargs):
|
||||
return {
|
||||
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
||||
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
||||
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
||||
'first_conv': 'stem.conv', 'classifier': 'head.fc',
|
||||
**kwargs
|
||||
}
|
||||
|
||||
|
||||
default_cfgs = {
|
||||
# GPU-Efficient (ResNet) weights
|
||||
'gernet_s': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-ger-weights/gernet_s-756b4751.pth'),
|
||||
'gernet_m': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-ger-weights/gernet_m-0873c53a.pth'),
|
||||
'gernet_l': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-ger-weights/gernet_l-f31e2e8d.pth',
|
||||
input_size=(3, 256, 256), pool_size=(8, 8)),
|
||||
|
||||
# RepVGG weights
|
||||
'repvgg_a2': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_a2-c1ee6d2b.pth',
|
||||
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')),
|
||||
'repvgg_b0': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_b0-80ac3f1b.pth',
|
||||
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')),
|
||||
'repvgg_b1': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_b1-77ca2989.pth',
|
||||
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')),
|
||||
'repvgg_b1g4': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_b1g4-abde5d92.pth',
|
||||
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')),
|
||||
'repvgg_b2': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_b2-25b7494e.pth',
|
||||
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')),
|
||||
'repvgg_b2g4': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_b2g4-165a85f2.pth',
|
||||
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')),
|
||||
'repvgg_b3': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_b3-199bc50d.pth',
|
||||
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')),
|
||||
'repvgg_b3g4': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_b3g4-73c370bf.pth',
|
||||
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')),
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class BlocksCfg:
|
||||
type: Union[str, nn.Module]
|
||||
d: int # block depth (number of block repeats in stage)
|
||||
c: int # number of output channels for each block in stage
|
||||
s: int = 2 # stride of stage (first block)
|
||||
gs: Optional[Union[int, Callable]] = None # group-size of blocks in stage, conv is depthwise if gs == 1
|
||||
br: float = 1. # bottleneck-ratio of blocks in stage
|
||||
|
||||
|
||||
@dataclass
|
||||
class ByobCfg:
|
||||
blocks: Tuple[BlocksCfg, ...]
|
||||
downsample: str = 'conv1x1'
|
||||
stem_type: str = '3x3'
|
||||
stem_chs: int = 32
|
||||
width_factor: float = 1.0
|
||||
num_features: int = 0 # num out_channels for final conv, no final 1x1 conv if 0
|
||||
zero_init_last_bn: bool = True
|
||||
|
||||
act_layer: str = 'relu'
|
||||
norm_layer: nn.Module = nn.BatchNorm2d
|
||||
attn_layer: Optional[str] = None
|
||||
attn_kwargs: dict = field(default_factory=lambda: dict())
|
||||
|
||||
|
||||
def _rep_vgg_bcfg(d=(4, 6, 16, 1), wf=(1., 1., 1., 1.), groups=0):
|
||||
c = (64, 128, 256, 512)
|
||||
group_size = 0
|
||||
if groups > 0:
|
||||
group_size = lambda chs, idx: chs // groups if (idx + 1) % 2 == 0 else 0
|
||||
bcfg = tuple([BlocksCfg(type='rep', d=d, c=c * wf, gs=group_size) for d, c, wf in zip(d, c, wf)])
|
||||
return bcfg
|
||||
|
||||
|
||||
model_cfgs = dict(
|
||||
|
||||
gernet_l=ByobCfg(
|
||||
blocks=(
|
||||
BlocksCfg(type='basic', d=1, c=128, s=2, gs=0, br=1.),
|
||||
BlocksCfg(type='basic', d=2, c=192, s=2, gs=0, br=1.),
|
||||
BlocksCfg(type='bottle', d=6, c=640, s=2, gs=0, br=1 / 4),
|
||||
BlocksCfg(type='bottle', d=5, c=640, s=2, gs=1, br=3.),
|
||||
BlocksCfg(type='bottle', d=4, c=640, s=1, gs=1, br=3.),
|
||||
),
|
||||
stem_chs=32,
|
||||
num_features=2560,
|
||||
),
|
||||
gernet_m=ByobCfg(
|
||||
blocks=(
|
||||
BlocksCfg(type='basic', d=1, c=128, s=2, gs=0, br=1.),
|
||||
BlocksCfg(type='basic', d=2, c=192, s=2, gs=0, br=1.),
|
||||
BlocksCfg(type='bottle', d=6, c=640, s=2, gs=0, br=1 / 4),
|
||||
BlocksCfg(type='bottle', d=4, c=640, s=2, gs=1, br=3.),
|
||||
BlocksCfg(type='bottle', d=1, c=640, s=1, gs=1, br=3.),
|
||||
),
|
||||
stem_chs=32,
|
||||
num_features=2560,
|
||||
),
|
||||
gernet_s=ByobCfg(
|
||||
blocks=(
|
||||
BlocksCfg(type='basic', d=1, c=48, s=2, gs=0, br=1.),
|
||||
BlocksCfg(type='basic', d=3, c=48, s=2, gs=0, br=1.),
|
||||
BlocksCfg(type='bottle', d=7, c=384, s=2, gs=0, br=1 / 4),
|
||||
BlocksCfg(type='bottle', d=2, c=560, s=2, gs=1, br=3.),
|
||||
BlocksCfg(type='bottle', d=1, c=256, s=1, gs=1, br=3.),
|
||||
),
|
||||
stem_chs=13,
|
||||
num_features=1920,
|
||||
),
|
||||
|
||||
repvgg_a2=ByobCfg(
|
||||
blocks=_rep_vgg_bcfg(d=(2, 4, 14, 1), wf=(1.5, 1.5, 1.5, 2.75)),
|
||||
stem_type='rep',
|
||||
stem_chs=64,
|
||||
),
|
||||
repvgg_b0=ByobCfg(
|
||||
blocks=_rep_vgg_bcfg(wf=(1., 1., 1., 2.5)),
|
||||
stem_type='rep',
|
||||
stem_chs=64,
|
||||
),
|
||||
repvgg_b1=ByobCfg(
|
||||
blocks=_rep_vgg_bcfg(wf=(2., 2., 2., 4.)),
|
||||
stem_type='rep',
|
||||
stem_chs=64,
|
||||
),
|
||||
repvgg_b1g4=ByobCfg(
|
||||
blocks=_rep_vgg_bcfg(wf=(2., 2., 2., 4.), groups=4),
|
||||
stem_type='rep',
|
||||
stem_chs=64,
|
||||
),
|
||||
repvgg_b2=ByobCfg(
|
||||
blocks=_rep_vgg_bcfg(wf=(2.5, 2.5, 2.5, 5.)),
|
||||
stem_type='rep',
|
||||
stem_chs=64,
|
||||
),
|
||||
repvgg_b2g4=ByobCfg(
|
||||
blocks=_rep_vgg_bcfg(wf=(2.5, 2.5, 2.5, 5.), groups=4),
|
||||
stem_type='rep',
|
||||
stem_chs=64,
|
||||
),
|
||||
repvgg_b3=ByobCfg(
|
||||
blocks=_rep_vgg_bcfg(wf=(3., 3., 3., 5.)),
|
||||
stem_type='rep',
|
||||
stem_chs=64,
|
||||
),
|
||||
repvgg_b3g4=ByobCfg(
|
||||
blocks=_rep_vgg_bcfg(wf=(3., 3., 3., 5.), groups=4),
|
||||
stem_type='rep',
|
||||
stem_chs=64,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def _na_args(cfg: dict):
|
||||
return dict(
|
||||
norm_layer=cfg.get('norm_layer', nn.BatchNorm2d),
|
||||
act_layer=cfg.get('act_layer', nn.ReLU))
|
||||
|
||||
|
||||
def _ex_tuple(cfg: dict, *names):
|
||||
return tuple([cfg.get(n, None) for n in names])
|
||||
|
||||
|
||||
def num_groups(group_size, channels):
|
||||
if not group_size: # 0 or None
|
||||
return 1 # normal conv with 1 group
|
||||
else:
|
||||
# NOTE group_size == 1 -> depthwise conv
|
||||
assert channels % group_size == 0
|
||||
return channels // group_size
|
||||
|
||||
|
||||
class DownsampleAvg(nn.Module):
|
||||
def __init__(self, in_chs, out_chs, stride=1, dilation=1, apply_act=False, norm_layer=None, act_layer=None):
|
||||
""" AvgPool Downsampling as in 'D' ResNet variants."""
|
||||
super(DownsampleAvg, self).__init__()
|
||||
avg_stride = stride if dilation == 1 else 1
|
||||
if stride > 1 or dilation > 1:
|
||||
avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d
|
||||
self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False)
|
||||
else:
|
||||
self.pool = nn.Identity()
|
||||
self.conv = ConvBnAct(in_chs, out_chs, 1, apply_act=apply_act, norm_layer=norm_layer, act_layer=act_layer)
|
||||
|
||||
def forward(self, x):
|
||||
return self.conv(self.pool(x))
|
||||
|
||||
|
||||
def create_downsample(type, **kwargs):
|
||||
if type == 'avg':
|
||||
return DownsampleAvg(**kwargs)
|
||||
else:
|
||||
return ConvBnAct(kwargs.pop('in_chs'), kwargs.pop('out_chs'), kernel_size=1, **kwargs)
|
||||
|
||||
|
||||
class BasicBlock(nn.Module):
|
||||
""" ResNet Basic Block - kxk + kxk
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, in_chs, out_chs, kernel_size=3, stride=1, dilation=(1, 1), group_size=None, bottle_ratio=1.0,
|
||||
downsample='avg', linear_out=False, layer_cfg=None, drop_block=None, drop_path_rate=0.):
|
||||
super(BasicBlock, self).__init__()
|
||||
layer_cfg = layer_cfg or {}
|
||||
act_layer, attn_layer = _ex_tuple(layer_cfg, 'act_layer', 'attn_layer')
|
||||
layer_args = _na_args(layer_cfg)
|
||||
mid_chs = make_divisible(out_chs * bottle_ratio)
|
||||
groups = num_groups(group_size, mid_chs)
|
||||
|
||||
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]:
|
||||
self.shortcut = create_downsample(
|
||||
downsample, in_chs=in_chs, out_chs=out_chs, stride=stride, dilation=dilation[0],
|
||||
apply_act=False, **layer_args)
|
||||
else:
|
||||
self.shortcut = nn.Identity()
|
||||
|
||||
self.conv1_kxk = ConvBnAct(in_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0], **layer_args)
|
||||
self.conv2_kxk = ConvBnAct(
|
||||
mid_chs, out_chs, kernel_size, dilation=dilation[1], groups=groups,
|
||||
drop_block=drop_block, apply_act=False, **layer_args)
|
||||
self.attn = nn.Identity() if attn_layer is None else attn_layer(out_chs)
|
||||
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
||||
self.act = nn.Identity() if linear_out else act_layer(inplace=True)
|
||||
|
||||
def init_weights(self, zero_init_last_bn=False):
|
||||
if zero_init_last_bn:
|
||||
nn.init.zeros_(self.conv2_kxk.bn.weight)
|
||||
|
||||
def forward(self, x):
|
||||
shortcut = self.shortcut(x)
|
||||
|
||||
# residual path
|
||||
x = self.conv1_kxk(x)
|
||||
x = self.conv2_kxk(x)
|
||||
x = self.attn(x)
|
||||
x = self.drop_path(x)
|
||||
|
||||
x = self.act(x + shortcut)
|
||||
return x
|
||||
|
||||
|
||||
class BottleneckBlock(nn.Module):
|
||||
""" ResNet-like Bottleneck Block - 1x1 - kxk - 1x1
|
||||
"""
|
||||
|
||||
def __init__(self, in_chs, out_chs, kernel_size=3, stride=1, dilation=(1, 1), bottle_ratio=1., group_size=None,
|
||||
downsample='avg', linear_out=False, layer_cfg=None, drop_block=None, drop_path_rate=0.):
|
||||
super(BottleneckBlock, self).__init__()
|
||||
layer_cfg = layer_cfg or {}
|
||||
act_layer, attn_layer = _ex_tuple(layer_cfg, 'act_layer', 'attn_layer')
|
||||
layer_args = _na_args(layer_cfg)
|
||||
mid_chs = make_divisible(out_chs * bottle_ratio)
|
||||
groups = num_groups(group_size, mid_chs)
|
||||
|
||||
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]:
|
||||
self.shortcut = create_downsample(
|
||||
downsample, in_chs=in_chs, out_chs=out_chs, stride=stride, dilation=dilation[0],
|
||||
apply_act=False, **layer_args)
|
||||
else:
|
||||
self.shortcut = nn.Identity()
|
||||
|
||||
self.conv1_1x1 = ConvBnAct(in_chs, mid_chs, 1, **layer_args)
|
||||
self.conv2_kxk = ConvBnAct(
|
||||
mid_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0],
|
||||
groups=groups, drop_block=drop_block, **layer_args)
|
||||
self.attn = nn.Identity() if attn_layer is None else attn_layer(mid_chs)
|
||||
self.conv3_1x1 = ConvBnAct(mid_chs, out_chs, 1, apply_act=False, **layer_args)
|
||||
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
||||
self.act = nn.Identity() if linear_out else act_layer(inplace=True)
|
||||
|
||||
def init_weights(self, zero_init_last_bn=False):
|
||||
if zero_init_last_bn:
|
||||
nn.init.zeros_(self.conv3_1x1.bn.weight)
|
||||
|
||||
def forward(self, x):
|
||||
shortcut = self.shortcut(x)
|
||||
|
||||
x = self.conv1_1x1(x)
|
||||
x = self.conv2_kxk(x)
|
||||
x = self.attn(x)
|
||||
x = self.conv3_1x1(x)
|
||||
x = self.drop_path(x)
|
||||
|
||||
x = self.act(x + shortcut)
|
||||
return x
|
||||
|
||||
|
||||
class DarkBlock(nn.Module):
|
||||
""" DarkNet-like (1x1 + 3x3 w/ stride) block
|
||||
|
||||
The GE-Net impl included a 1x1 + 3x3 block in their search space. It was not used in the feature models.
|
||||
This block is pretty much a DarkNet block (also DenseNet) hence the name. Neither DarkNet or DenseNet
|
||||
uses strides within the block (external 3x3 or maxpool downsampling is done in front of the block repeats).
|
||||
|
||||
If one does want to use a lot of these blocks w/ stride, I'd recommend using the EdgeBlock (3x3 /w stride + 1x1)
|
||||
for more optimal compute.
|
||||
"""
|
||||
|
||||
def __init__(self, in_chs, out_chs, kernel_size=3, stride=1, dilation=(1, 1), bottle_ratio=1.0, group_size=None,
|
||||
downsample='avg', linear_out=False, layer_cfg=None, drop_block=None, drop_path_rate=0.):
|
||||
super(DarkBlock, self).__init__()
|
||||
layer_cfg = layer_cfg or {}
|
||||
act_layer, attn_layer = _ex_tuple(layer_cfg, 'act_layer', 'attn_layer')
|
||||
layer_args = _na_args(layer_cfg)
|
||||
mid_chs = make_divisible(out_chs * bottle_ratio)
|
||||
groups = num_groups(group_size, mid_chs)
|
||||
|
||||
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]:
|
||||
self.shortcut = create_downsample(
|
||||
downsample, in_chs=in_chs, out_chs=out_chs, stride=stride, dilation=dilation[0],
|
||||
apply_act=False, **layer_args)
|
||||
else:
|
||||
self.shortcut = nn.Identity()
|
||||
|
||||
self.conv1_1x1 = ConvBnAct(in_chs, mid_chs, 1, **layer_args)
|
||||
self.conv2_kxk = ConvBnAct(
|
||||
mid_chs, out_chs, kernel_size, stride=stride, dilation=dilation[0],
|
||||
groups=groups, drop_block=drop_block, apply_act=False, **layer_args)
|
||||
self.attn = nn.Identity() if attn_layer is None else attn_layer(out_chs)
|
||||
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
||||
self.act = nn.Identity() if linear_out else act_layer(inplace=True)
|
||||
|
||||
def init_weights(self, zero_init_last_bn=False):
|
||||
if zero_init_last_bn:
|
||||
nn.init.zeros_(self.conv2_kxk.bn.weight)
|
||||
|
||||
def forward(self, x):
|
||||
shortcut = self.shortcut(x)
|
||||
|
||||
x = self.conv1_1x1(x)
|
||||
x = self.conv2_kxk(x)
|
||||
x = self.attn(x)
|
||||
x = self.drop_path(x)
|
||||
x = self.act(x + shortcut)
|
||||
return x
|
||||
|
||||
|
||||
class EdgeBlock(nn.Module):
|
||||
""" EdgeResidual-like (3x3 + 1x1) block
|
||||
|
||||
A two layer block like DarkBlock, but with the order of the 3x3 and 1x1 convs reversed.
|
||||
Very similar to the EfficientNet Edge-Residual block but this block it ends with activations, is
|
||||
intended to be used with either expansion or bottleneck contraction, and can use DW/group/non-grouped convs.
|
||||
|
||||
FIXME is there a more common 3x3 + 1x1 conv block to name this after?
|
||||
"""
|
||||
|
||||
def __init__(self, in_chs, out_chs, kernel_size=3, stride=1, dilation=(1, 1), bottle_ratio=1.0, group_size=None,
|
||||
downsample='avg', linear_out=False, layer_cfg=None, drop_block=None, drop_path_rate=0.):
|
||||
super(EdgeBlock, self).__init__()
|
||||
layer_cfg = layer_cfg or {}
|
||||
act_layer, attn_layer = _ex_tuple(layer_cfg, 'act_layer', 'attn_layer')
|
||||
layer_args = _na_args(layer_cfg)
|
||||
mid_chs = make_divisible(out_chs * bottle_ratio)
|
||||
groups = num_groups(group_size, mid_chs)
|
||||
|
||||
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]:
|
||||
self.shortcut = create_downsample(
|
||||
downsample, in_chs=in_chs, out_chs=out_chs, stride=stride, dilation=dilation[0],
|
||||
apply_act=False, **layer_args)
|
||||
else:
|
||||
self.shortcut = nn.Identity()
|
||||
|
||||
self.conv1_kxk = ConvBnAct(
|
||||
in_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0],
|
||||
groups=groups, drop_block=drop_block, **layer_args)
|
||||
self.attn = nn.Identity() if attn_layer is None else attn_layer(out_chs)
|
||||
self.conv2_1x1 = ConvBnAct(mid_chs, out_chs, 1, apply_act=False, **layer_args)
|
||||
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
||||
self.act = nn.Identity() if linear_out else act_layer(inplace=True)
|
||||
|
||||
def init_weights(self, zero_init_last_bn=False):
|
||||
if zero_init_last_bn:
|
||||
nn.init.zeros_(self.conv2_1x1.bn.weight)
|
||||
|
||||
def forward(self, x):
|
||||
shortcut = self.shortcut(x)
|
||||
|
||||
x = self.conv1_kxk(x)
|
||||
x = self.attn(x)
|
||||
x = self.conv2_1x1(x)
|
||||
x = self.drop_path(x)
|
||||
x = self.act(x + shortcut)
|
||||
return x
|
||||
|
||||
|
||||
class RepVggBlock(nn.Module):
|
||||
""" RepVGG Block.
|
||||
|
||||
Adapted from impl at https://github.com/DingXiaoH/RepVGG
|
||||
|
||||
This version does not currently support the deploy optimization. It is currently fixed in 'train' mode.
|
||||
"""
|
||||
|
||||
def __init__(self, in_chs, out_chs, kernel_size=3, stride=1, dilation=(1, 1), bottle_ratio=1.0, group_size=None,
|
||||
downsample='', layer_cfg=None, drop_block=None, drop_path_rate=0.):
|
||||
super(RepVggBlock, self).__init__()
|
||||
layer_cfg = layer_cfg or {}
|
||||
act_layer, norm_layer, attn_layer = _ex_tuple(layer_cfg, 'act_layer', 'norm_layer', 'attn_layer')
|
||||
norm_layer = convert_norm_act(norm_layer=norm_layer, act_layer=act_layer)
|
||||
layer_args = _na_args(layer_cfg)
|
||||
groups = num_groups(group_size, in_chs)
|
||||
|
||||
use_ident = in_chs == out_chs and stride == 1 and dilation[0] == dilation[1]
|
||||
self.identity = norm_layer(out_chs, apply_act=False) if use_ident else None
|
||||
self.conv_kxk = ConvBnAct(
|
||||
in_chs, out_chs, kernel_size, stride=stride, dilation=dilation[0],
|
||||
groups=groups, drop_block=drop_block, apply_act=False, **layer_args)
|
||||
self.conv_1x1 = ConvBnAct(in_chs, out_chs, 1, stride=stride, groups=groups, apply_act=False, **layer_args)
|
||||
self.attn = nn.Identity() if attn_layer is None else attn_layer(out_chs)
|
||||
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. and use_ident else nn.Identity()
|
||||
self.act = act_layer(inplace=True)
|
||||
|
||||
def init_weights(self, zero_init_last_bn=False):
|
||||
# NOTE this init overrides that base model init with specific changes for the block type
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.BatchNorm2d):
|
||||
nn.init.normal_(m.weight, .1, .1)
|
||||
nn.init.normal_(m.bias, 0, .1)
|
||||
|
||||
def forward(self, x):
|
||||
if self.identity is None:
|
||||
x = self.conv_1x1(x) + self.conv_kxk(x)
|
||||
else:
|
||||
identity = self.identity(x)
|
||||
x = self.conv_1x1(x) + self.conv_kxk(x)
|
||||
x = self.drop_path(x) # not in the paper / official impl, experimental
|
||||
x = x + identity
|
||||
x = self.attn(x) # no attn in the paper / official impl, experimental
|
||||
x = self.act(x)
|
||||
return x
|
||||
|
||||
|
||||
_block_registry = dict(
|
||||
basic=BasicBlock,
|
||||
bottle=BottleneckBlock,
|
||||
dark=DarkBlock,
|
||||
edge=EdgeBlock,
|
||||
rep=RepVggBlock,
|
||||
)
|
||||
|
||||
|
||||
def register_block(block_type:str, block_fn: nn.Module):
|
||||
_block_registry[block_type] = block_fn
|
||||
|
||||
|
||||
def create_block(block: Union[str, nn.Module], **kwargs):
|
||||
if isinstance(block, (nn.Module, partial)):
|
||||
return block(**kwargs)
|
||||
assert block in _block_registry, f'Unknown block type ({block}'
|
||||
return _block_registry[block](**kwargs)
|
||||
|
||||
|
||||
def create_stem(in_chs, out_chs, stem_type='', layer_cfg=None):
|
||||
layer_cfg = layer_cfg or {}
|
||||
layer_args = _na_args(layer_cfg)
|
||||
assert stem_type in ('', 'deep', 'deep_tiered', '3x3', '7x7', 'rep')
|
||||
if 'deep' in stem_type:
|
||||
# 3 deep 3x3 conv stack
|
||||
stem = OrderedDict()
|
||||
stem_chs = (out_chs // 2, out_chs // 2)
|
||||
if 'tiered' in stem_type:
|
||||
stem_chs = (3 * stem_chs[0] // 4, stem_chs[1])
|
||||
norm_layer, act_layer = _ex_tuple(layer_args, 'norm_layer', 'act_layer')
|
||||
stem['conv1'] = create_conv2d(in_chs, stem_chs[0], kernel_size=3, stride=2)
|
||||
stem['conv2'] = create_conv2d(stem_chs[0], stem_chs[1], kernel_size=3, stride=1)
|
||||
stem['conv3'] = create_conv2d(stem_chs[1], out_chs, kernel_size=3, stride=1)
|
||||
norm_act_layer = convert_norm_act(norm_layer=norm_layer, act_layer=act_layer)
|
||||
stem['na'] = norm_act_layer(out_chs)
|
||||
stem = nn.Sequential(stem)
|
||||
elif '7x7' in stem_type:
|
||||
# 7x7 stem conv as in ResNet
|
||||
stem = ConvBnAct(in_chs, out_chs, 7, stride=2, **layer_args)
|
||||
elif 'rep' in stem_type:
|
||||
stem = RepVggBlock(in_chs, out_chs, stride=2, layer_cfg=layer_cfg)
|
||||
else:
|
||||
# 3x3 stem conv as in RegNet
|
||||
stem = ConvBnAct(in_chs, out_chs, 3, stride=2, **layer_args)
|
||||
|
||||
return stem
|
||||
|
||||
|
||||
class ByobNet(nn.Module):
|
||||
""" 'Bring-your-own-blocks' Net
|
||||
|
||||
A flexible network backbone that allows building model stem + blocks via
|
||||
dataclass cfg definition w/ factory functions for module instantiation.
|
||||
|
||||
Current assumption is that both stem and blocks are in conv-bn-act order (w/ block ending in act).
|
||||
"""
|
||||
def __init__(self, cfg: ByobCfg, num_classes=1000, in_chans=3, global_pool='avg', output_stride=32,
|
||||
zero_init_last_bn=True, drop_rate=0., drop_path_rate=0.):
|
||||
super().__init__()
|
||||
self.num_classes = num_classes
|
||||
self.drop_rate = drop_rate
|
||||
norm_layer = cfg.norm_layer
|
||||
act_layer = get_act_layer(cfg.act_layer)
|
||||
attn_layer = partial(get_attn(cfg.attn_layer), **cfg.attn_kwargs) if cfg.attn_layer else None
|
||||
layer_cfg = dict(norm_layer=norm_layer, act_layer=act_layer, attn_layer=attn_layer)
|
||||
|
||||
stem_chs = int(round((cfg.stem_chs or cfg.blocks[0].c) * cfg.width_factor))
|
||||
self.stem = create_stem(in_chans, stem_chs, cfg.stem_type, layer_cfg=layer_cfg)
|
||||
|
||||
self.feature_info = []
|
||||
depths = [bc.d for bc in cfg.blocks]
|
||||
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
|
||||
prev_name = 'stem'
|
||||
prev_chs = stem_chs
|
||||
net_stride = 2
|
||||
dilation = 1
|
||||
stages = []
|
||||
for stage_idx, block_cfg in enumerate(cfg.blocks):
|
||||
stride = block_cfg.s
|
||||
if stride != 1:
|
||||
self.feature_info.append(dict(num_chs=prev_chs, reduction=net_stride, module=prev_name))
|
||||
if net_stride >= output_stride and stride > 1:
|
||||
dilation *= stride
|
||||
stride = 1
|
||||
net_stride *= stride
|
||||
first_dilation = 1 if dilation in (1, 2) else 2
|
||||
|
||||
blocks = []
|
||||
for block_idx in range(block_cfg.d):
|
||||
out_chs = make_divisible(block_cfg.c * cfg.width_factor)
|
||||
group_size = block_cfg.gs
|
||||
if isinstance(group_size, Callable):
|
||||
group_size = group_size(out_chs, block_idx)
|
||||
block_kwargs = dict( # Blocks used in this model must accept these arguments
|
||||
in_chs=prev_chs,
|
||||
out_chs=out_chs,
|
||||
stride=stride if block_idx == 0 else 1,
|
||||
dilation=(first_dilation, dilation),
|
||||
group_size=group_size,
|
||||
bottle_ratio=block_cfg.br,
|
||||
downsample=cfg.downsample,
|
||||
drop_path_rate=dpr[stage_idx][block_idx],
|
||||
layer_cfg=layer_cfg,
|
||||
)
|
||||
blocks += [create_block(block_cfg.type, **block_kwargs)]
|
||||
first_dilation = dilation
|
||||
prev_chs = out_chs
|
||||
stages += [nn.Sequential(*blocks)]
|
||||
prev_name = f'stages.{stage_idx}'
|
||||
self.stages = nn.Sequential(*stages)
|
||||
|
||||
if cfg.num_features:
|
||||
self.num_features = int(round(cfg.width_factor * cfg.num_features))
|
||||
self.final_conv = ConvBnAct(prev_chs, self.num_features, 1, **_na_args(layer_cfg))
|
||||
else:
|
||||
self.num_features = prev_chs
|
||||
self.final_conv = nn.Identity()
|
||||
self.feature_info += [dict(num_chs=self.num_features, reduction=net_stride, module='final_conv')]
|
||||
|
||||
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
|
||||
|
||||
for n, m in self.named_modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||||
fan_out //= m.groups
|
||||
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
||||
if m.bias is not None:
|
||||
m.bias.data.zero_()
|
||||
elif isinstance(m, nn.Linear):
|
||||
nn.init.normal_(m.weight, mean=0.0, std=0.01)
|
||||
nn.init.zeros_(m.bias)
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
nn.init.ones_(m.weight)
|
||||
nn.init.zeros_(m.bias)
|
||||
for m in self.modules():
|
||||
# call each block's weight init for block-specific overrides to init above
|
||||
if hasattr(m, 'init_weights'):
|
||||
m.init_weights(zero_init_last_bn=zero_init_last_bn)
|
||||
|
||||
def get_classifier(self):
|
||||
return self.head.fc
|
||||
|
||||
def reset_classifier(self, num_classes, global_pool='avg'):
|
||||
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
|
||||
|
||||
def forward_features(self, x):
|
||||
x = self.stem(x)
|
||||
x = self.stages(x)
|
||||
x = self.final_conv(x)
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
x = self.forward_features(x)
|
||||
x = self.head(x)
|
||||
return x
|
||||
|
||||
|
||||
def _create_byobnet(variant, pretrained=False, **kwargs):
|
||||
return build_model_with_cfg(
|
||||
ByobNet, variant, pretrained,
|
||||
default_cfg=default_cfgs[variant],
|
||||
model_cfg=model_cfgs[variant],
|
||||
feature_cfg=dict(flatten_sequential=True),
|
||||
**kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def gernet_l(pretrained=False, **kwargs):
|
||||
""" GEResNet-Large (GENet-Large from official impl)
|
||||
`Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090
|
||||
"""
|
||||
return _create_byobnet('gernet_l', pretrained=pretrained, **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def gernet_m(pretrained=False, **kwargs):
|
||||
""" GEResNet-Medium (GENet-Normal from official impl)
|
||||
`Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090
|
||||
"""
|
||||
return _create_byobnet('gernet_m', pretrained=pretrained, **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def gernet_s(pretrained=False, **kwargs):
|
||||
""" EResNet-Small (GENet-Small from official impl)
|
||||
`Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090
|
||||
"""
|
||||
return _create_byobnet('gernet_s', pretrained=pretrained, **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def repvgg_a2(pretrained=False, **kwargs):
|
||||
""" RepVGG-A2
|
||||
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
|
||||
"""
|
||||
return _create_byobnet('repvgg_a2', pretrained=pretrained, **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def repvgg_b0(pretrained=False, **kwargs):
|
||||
""" RepVGG-B0
|
||||
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
|
||||
"""
|
||||
return _create_byobnet('repvgg_b0', pretrained=pretrained, **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def repvgg_b1(pretrained=False, **kwargs):
|
||||
""" RepVGG-B1
|
||||
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
|
||||
"""
|
||||
return _create_byobnet('repvgg_b1', pretrained=pretrained, **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def repvgg_b1g4(pretrained=False, **kwargs):
|
||||
""" RepVGG-B1g4
|
||||
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
|
||||
"""
|
||||
return _create_byobnet('repvgg_b1g4', pretrained=pretrained, **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def repvgg_b2(pretrained=False, **kwargs):
|
||||
""" RepVGG-B2
|
||||
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
|
||||
"""
|
||||
return _create_byobnet('repvgg_b2', pretrained=pretrained, **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def repvgg_b2g4(pretrained=False, **kwargs):
|
||||
""" RepVGG-B2g4
|
||||
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
|
||||
"""
|
||||
return _create_byobnet('repvgg_b2g4', pretrained=pretrained, **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def repvgg_b3(pretrained=False, **kwargs):
|
||||
""" RepVGG-B3
|
||||
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
|
||||
"""
|
||||
return _create_byobnet('repvgg_b3', pretrained=pretrained, **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def repvgg_b3g4(pretrained=False, **kwargs):
|
||||
""" RepVGG-B3g4
|
||||
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
|
||||
"""
|
||||
return _create_byobnet('repvgg_b3g4', pretrained=pretrained, **kwargs)
|
@ -0,0 +1,261 @@
|
||||
"""VGG
|
||||
|
||||
Adapted from https://github.com/pytorch/vision 'vgg.py' (BSD-3-Clause) with a few changes for
|
||||
timm functionality.
|
||||
|
||||
Copyright 2021 Ross Wightman
|
||||
"""
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from typing import Union, List, Dict, Any, cast
|
||||
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from .helpers import build_model_with_cfg
|
||||
from .layers import ClassifierHead, ConvBnAct
|
||||
from .registry import register_model
|
||||
|
||||
__all__ = [
|
||||
'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn',
|
||||
'vgg19_bn', 'vgg19',
|
||||
]
|
||||
|
||||
|
||||
def _cfg(url='', **kwargs):
|
||||
return {
|
||||
'url': url,
|
||||
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (1, 1),
|
||||
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
||||
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
||||
'first_conv': 'features.0', 'classifier': 'head.fc',
|
||||
**kwargs
|
||||
}
|
||||
|
||||
|
||||
default_cfgs = {
|
||||
'vgg11': _cfg(url='https://download.pytorch.org/models/vgg11-bbd30ac9.pth'),
|
||||
'vgg13': _cfg(url='https://download.pytorch.org/models/vgg13-c768596a.pth'),
|
||||
'vgg16': _cfg(url='https://download.pytorch.org/models/vgg16-397923af.pth'),
|
||||
'vgg19': _cfg(url='https://download.pytorch.org/models/vgg19-dcbb9e9d.pth'),
|
||||
'vgg11_bn': _cfg(url='https://download.pytorch.org/models/vgg11_bn-6002323d.pth'),
|
||||
'vgg13_bn': _cfg(url='https://download.pytorch.org/models/vgg13_bn-abd245e5.pth'),
|
||||
'vgg16_bn': _cfg(url='https://download.pytorch.org/models/vgg16_bn-6c64b313.pth'),
|
||||
'vgg19_bn': _cfg(url='https://download.pytorch.org/models/vgg19_bn-c79401a0.pth'),
|
||||
}
|
||||
|
||||
|
||||
cfgs: Dict[str, List[Union[str, int]]] = {
|
||||
'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
|
||||
'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
|
||||
'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
|
||||
'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
|
||||
}
|
||||
|
||||
|
||||
class ConvMlp(nn.Module):
|
||||
|
||||
def __init__(self, in_features=512, out_features=4096, kernel_size=7, mlp_ratio=1.0,
|
||||
drop_rate: float = 0.2, act_layer: nn.Module = None, conv_layer: nn.Module = None):
|
||||
super(ConvMlp, self).__init__()
|
||||
self.input_kernel_size = kernel_size
|
||||
mid_features = int(out_features * mlp_ratio)
|
||||
self.fc1 = conv_layer(in_features, mid_features, kernel_size, bias=True)
|
||||
self.act1 = act_layer(True)
|
||||
self.drop = nn.Dropout(drop_rate)
|
||||
self.fc2 = conv_layer(mid_features, out_features, 1, bias=True)
|
||||
self.act2 = act_layer(True)
|
||||
|
||||
def forward(self, x):
|
||||
if x.shape[-2] < self.input_kernel_size or x.shape[-1] < self.input_kernel_size:
|
||||
# keep the input size >= 7x7
|
||||
output_size = (max(self.input_kernel_size, x.shape[-2]), max(self.input_kernel_size, x.shape[-1]))
|
||||
x = F.adaptive_avg_pool2d(x, output_size)
|
||||
x = self.fc1(x)
|
||||
x = self.act1(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
x = self.act2(x)
|
||||
return x
|
||||
|
||||
|
||||
class VGG(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cfg: List[Any],
|
||||
num_classes: int = 1000,
|
||||
in_chans: int = 3,
|
||||
output_stride: int = 32,
|
||||
mlp_ratio: float = 1.0,
|
||||
act_layer: nn.Module = nn.ReLU,
|
||||
conv_layer: nn.Module = nn.Conv2d,
|
||||
norm_layer: nn.Module = None,
|
||||
global_pool: str = 'avg',
|
||||
drop_rate: float = 0.,
|
||||
) -> None:
|
||||
super(VGG, self).__init__()
|
||||
assert output_stride == 32
|
||||
self.num_classes = num_classes
|
||||
self.num_features = 4096
|
||||
self.drop_rate = drop_rate
|
||||
self.feature_info = []
|
||||
prev_chs = in_chans
|
||||
net_stride = 1
|
||||
pool_layer = nn.MaxPool2d
|
||||
layers: List[nn.Module] = []
|
||||
for v in cfg:
|
||||
last_idx = len(layers) - 1
|
||||
if v == 'M':
|
||||
self.feature_info.append(dict(num_chs=prev_chs, reduction=net_stride, module=f'features.{last_idx}'))
|
||||
layers += [pool_layer(kernel_size=2, stride=2)]
|
||||
net_stride *= 2
|
||||
else:
|
||||
v = cast(int, v)
|
||||
conv2d = conv_layer(prev_chs, v, kernel_size=3, padding=1)
|
||||
if norm_layer is not None:
|
||||
layers += [conv2d, norm_layer(v), act_layer(inplace=True)]
|
||||
else:
|
||||
layers += [conv2d, act_layer(inplace=True)]
|
||||
prev_chs = v
|
||||
self.features = nn.Sequential(*layers)
|
||||
self.feature_info.append(dict(num_chs=prev_chs, reduction=net_stride, module=f'features.{len(layers) - 1}'))
|
||||
self.pre_logits = ConvMlp(
|
||||
prev_chs, self.num_features, 7, mlp_ratio=mlp_ratio,
|
||||
drop_rate=drop_rate, act_layer=act_layer, conv_layer=conv_layer)
|
||||
self.head = ClassifierHead(
|
||||
self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate)
|
||||
|
||||
self._initialize_weights()
|
||||
|
||||
def get_classifier(self):
|
||||
return self.head.fc
|
||||
|
||||
def reset_classifier(self, num_classes, global_pool='avg'):
|
||||
self.num_classes = num_classes
|
||||
self.head = ClassifierHead(
|
||||
self.num_features, self.num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
|
||||
|
||||
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.features(x)
|
||||
x = self.pre_logits(x)
|
||||
return x
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.forward_features(x)
|
||||
x = self.head(x)
|
||||
return x
|
||||
|
||||
def _initialize_weights(self) -> None:
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
nn.init.constant_(m.weight, 1)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.Linear):
|
||||
nn.init.normal_(m.weight, 0, 0.01)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
|
||||
def _filter_fn(state_dict):
|
||||
""" convert patch embedding weight from manual patchify + linear proj to conv"""
|
||||
out_dict = {}
|
||||
for k, v in state_dict.items():
|
||||
k_r = k
|
||||
k_r = k_r.replace('classifier.0', 'pre_logits.fc1')
|
||||
k_r = k_r.replace('classifier.3', 'pre_logits.fc2')
|
||||
k_r = k_r.replace('classifier.6', 'head.fc')
|
||||
if 'classifier.0.weight' in k:
|
||||
v = v.reshape(-1, 512, 7, 7)
|
||||
if 'classifier.3.weight' in k:
|
||||
v = v.reshape(-1, 4096, 1, 1)
|
||||
out_dict[k_r] = v
|
||||
return out_dict
|
||||
|
||||
|
||||
def _create_vgg(variant: str, pretrained: bool, **kwargs: Any) -> VGG:
|
||||
cfg = variant.split('_')[0]
|
||||
# NOTE: VGG is one of the only models with stride==1 features, so indices are offset from other models
|
||||
out_indices = kwargs.get('out_indices', (0, 1, 2, 3, 4, 5))
|
||||
model = build_model_with_cfg(
|
||||
VGG, variant, pretrained=pretrained,
|
||||
model_cfg=cfgs[cfg],
|
||||
default_cfg=default_cfgs[variant],
|
||||
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
|
||||
pretrained_filter_fn=_filter_fn,
|
||||
**kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def vgg11(pretrained: bool = False, **kwargs: Any) -> VGG:
|
||||
r"""VGG 11-layer model (configuration "A") from
|
||||
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
|
||||
"""
|
||||
model_args = dict(**kwargs)
|
||||
return _create_vgg('vgg11', pretrained=pretrained, **model_args)
|
||||
|
||||
|
||||
@register_model
|
||||
def vgg11_bn(pretrained: bool = False, **kwargs: Any) -> VGG:
|
||||
r"""VGG 11-layer model (configuration "A") with batch normalization
|
||||
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
|
||||
"""
|
||||
model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs)
|
||||
return _create_vgg('vgg11_bn', pretrained=pretrained, **model_args)
|
||||
|
||||
|
||||
@register_model
|
||||
def vgg13(pretrained: bool = False, **kwargs: Any) -> VGG:
|
||||
r"""VGG 13-layer model (configuration "B")
|
||||
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
|
||||
"""
|
||||
model_args = dict(**kwargs)
|
||||
return _create_vgg('vgg13', pretrained=pretrained, **model_args)
|
||||
|
||||
|
||||
@register_model
|
||||
def vgg13_bn(pretrained: bool = False, **kwargs: Any) -> VGG:
|
||||
r"""VGG 13-layer model (configuration "B") with batch normalization
|
||||
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
|
||||
"""
|
||||
model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs)
|
||||
return _create_vgg('vgg13_bn', pretrained=pretrained, **model_args)
|
||||
|
||||
|
||||
@register_model
|
||||
def vgg16(pretrained: bool = False, **kwargs: Any) -> VGG:
|
||||
r"""VGG 16-layer model (configuration "D")
|
||||
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
|
||||
"""
|
||||
model_args = dict(**kwargs)
|
||||
return _create_vgg('vgg16', pretrained=pretrained, **model_args)
|
||||
|
||||
|
||||
@register_model
|
||||
def vgg16_bn(pretrained: bool = False, **kwargs: Any) -> VGG:
|
||||
r"""VGG 16-layer model (configuration "D") with batch normalization
|
||||
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
|
||||
"""
|
||||
model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs)
|
||||
return _create_vgg('vgg16_bn', pretrained=pretrained, **model_args)
|
||||
|
||||
|
||||
@register_model
|
||||
def vgg19(pretrained: bool = False, **kwargs: Any) -> VGG:
|
||||
r"""VGG 19-layer model (configuration "E")
|
||||
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
|
||||
"""
|
||||
model_args = dict(**kwargs)
|
||||
return _create_vgg('vgg19', pretrained=pretrained, **model_args)
|
||||
|
||||
|
||||
@register_model
|
||||
def vgg19_bn(pretrained: bool = False, **kwargs: Any) -> VGG:
|
||||
r"""VGG 19-layer model (configuration 'E') with batch normalization
|
||||
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
|
||||
"""
|
||||
model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs)
|
||||
return _create_vgg('vgg19_bn', pretrained=pretrained, **model_args)
|
@ -1 +1 @@
|
||||
__version__ = '0.4.2'
|
||||
__version__ = '0.4.3'
|
||||
|
Loading…
Reference in new issue