Update README.md and few more comments

pull/427/head
Ross Wightman 4 years ago
parent 0d253e2c5e
commit d86dbe45c2

@ -2,8 +2,11 @@
## What's New
### Feb 12, 2021
* Update Normalization-Free nets to include new NFNet-F (https://arxiv.org/abs/2102.06171) model defs
### Feb 10, 2021
* First Normalizer-Free model training experiments done,
* First Normalization-Free model training experiments done,
* nf_resnet50 - 80.68 top-1 @ 288x288, 80.31 @ 256x256
* nf_regnet_b1 - 79.30 @ 288x288, 78.75 @ 256x256
* More model archs, incl a flexible ByobNet backbone ('Bring-your-own-blocks')
@ -164,6 +167,7 @@ A full version of the list below with source links can be found in the [document
* Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261
* MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244
* NASNet-A - https://arxiv.org/abs/1707.07012
* NFNet-F - https://arxiv.org/abs/2102.06171
* NF-RegNet / NF-ResNet - https://arxiv.org/abs/2101.08692
* PNasNet - https://arxiv.org/abs/1712.00559
* RegNet - https://arxiv.org/abs/2003.13678

@ -236,7 +236,7 @@ class DownsampleAvg(nn.Module):
class NormFreeBlock(nn.Module):
"""Normalization-free pre-activation block.
"""Normalization-Free pre-activation block.
"""
def __init__(
@ -351,6 +351,7 @@ def create_stem(in_chs, out_chs, stem_type='', conv_layer=None, act_layer=None):
return nn.Sequential(stem), stem_stride, stem_feature
# from https://github.com/deepmind/deepmind-research/tree/master/nfnets
_nonlin_gamma = dict(
identity=1.0,
celu=1.270926833152771,
@ -371,10 +372,13 @@ _nonlin_gamma = dict(
class NormFreeNet(nn.Module):
""" Normalization-free ResNets and RegNets
""" Normalization-Free Network
As described in `Characterizing signal propagation to close the performance gap in unnormalized ResNets`
As described in :
`Characterizing signal propagation to close the performance gap in unnormalized ResNets`
- https://arxiv.org/abs/2101.08692
and
`High-Performance Large-Scale Image Recognition Without Normalization` - https://arxiv.org/abs/2102.06171
This model aims to cover both the NFRegNet-Bx models as detailed in the paper's code snippets and
the (preact) ResNet models described earlier in the paper.
@ -432,7 +436,7 @@ class NormFreeNet(nn.Module):
blocks += [NormFreeBlock(
in_chs=prev_chs, out_chs=out_chs,
alpha=cfg.alpha,
beta=1. / expected_var ** 0.5, # NOTE: beta used as multiplier in block
beta=1. / expected_var ** 0.5,
stride=stride if block_idx == 0 else 1,
dilation=dilation,
first_dilation=first_dilation,
@ -477,8 +481,6 @@ class NormFreeNet(nn.Module):
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Conv2d):
# as per discussion with paper authors, original in haiku is
# hk.initializers.VarianceScaling(1.0, 'fan_in', 'normal')' w/ zero'd bias
nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='linear')
if m.bias is not None:
nn.init.zeros_(m.bias)

Loading…
Cancel
Save