Merge remote-tracking branch 'origin/main' into refactor-imports

pull/1581/head
Ross Wightman 2 years ago
commit d5e7d6b27e

@ -21,7 +21,37 @@ And a big thanks to all GitHub sponsors who helped with some of my costs before
## What's New
# Dec 5, 2022
### 🤗 Survey: Feedback Appreciated 🤗
For a few months now, `timm` has been part of the Hugging Face ecosystem. Yearly, we survey users of our tools to see what we could do better, what we need to continue doing, or what we need to stop doing.
If you have a couple of minutes and want to participate in shaping the future of the ecosystem, please share your thoughts:
[**hf.co/oss-survey**](https://hf.co/oss-survey) 🙏
### Dec 8, 2022
* Add 'EVA l' to `vision_transformer.py`, MAE style ViT-L/14 MIM pretrain w/ EVA-CLIP targets, FT on ImageNet-1k (w/ ImageNet-22k intermediate for some)
* original source: https://github.com/baaivision/EVA
| model | top1 | param_count | gmac | macts | hub |
|:------------------------------------------|-----:|------------:|------:|------:|:----------------------------------------|
| eva_large_patch14_336.in22k_ft_in22k_in1k | 89.2 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) |
| eva_large_patch14_336.in22k_ft_in1k | 88.7 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) |
| eva_large_patch14_196.in22k_ft_in22k_in1k | 88.6 | 304.1 | 61.6 | 63.5 | [link](https://huggingface.co/BAAI/EVA) |
| eva_large_patch14_196.in22k_ft_in1k | 87.9 | 304.1 | 61.6 | 63.5 | [link](https://huggingface.co/BAAI/EVA) |
### Dec 6, 2022
* Add 'EVA g', BEiT style ViT-g/14 model weights w/ both MIM pretrain and CLIP pretrain to `beit.py`.
* original source: https://github.com/baaivision/EVA
* paper: https://arxiv.org/abs/2211.07636
| model | top1 | param_count | gmac | macts | hub |
|:-----------------------------------------|-------:|--------------:|-------:|--------:|:----------------------------------------|
| eva_giant_patch14_560.m30m_ft_in22k_in1k | 89.8 | 1014.4 | 1906.8 | 2577.2 | [link](https://huggingface.co/BAAI/EVA) |
| eva_giant_patch14_336.m30m_ft_in22k_in1k | 89.6 | 1013 | 620.6 | 550.7 | [link](https://huggingface.co/BAAI/EVA) |
| eva_giant_patch14_336.clip_ft_in1k | 89.4 | 1013 | 620.6 | 550.7 | [link](https://huggingface.co/BAAI/EVA) |
| eva_giant_patch14_224.clip_ft_in1k | 89.1 | 1012.6 | 267.2 | 192.6 | [link](https://huggingface.co/BAAI/EVA) |
### Dec 5, 2022
* Pre-release (`0.8.0dev0`) of multi-weight support (`model_arch.pretrained_tag`). Install with `pip install --pre timm`
* vision_transformer, maxvit, convnext are the first three model impl w/ support
@ -376,6 +406,7 @@ A full version of the list below with source links can be found in the [document
* MobileNet-V2 - https://arxiv.org/abs/1801.04381
* Single-Path NAS - https://arxiv.org/abs/1904.02877
* TinyNet - https://arxiv.org/abs/2010.14819
* EVA - https://arxiv.org/abs/2211.07636
* GCViT (Global Context Vision Transformer) - https://arxiv.org/abs/2206.09959
* GhostNet - https://arxiv.org/abs/1911.11907
* gMLP - https://arxiv.org/abs/2105.08050

@ -81,9 +81,11 @@ parser.add_argument('--results-file', default='', type=str,
parser.add_argument('--results-format', default='csv', type=str,
help='Format for results file one of (csv, json) (default: csv).')
parser.add_argument('--num-warm-iter', default=10, type=int,
metavar='N', help='Number of warmup iterations (default: 10)')
help='Number of warmup iterations (default: 10)')
parser.add_argument('--num-bench-iter', default=40, type=int,
metavar='N', help='Number of benchmark iterations (default: 40)')
help='Number of benchmark iterations (default: 40)')
parser.add_argument('--device', default='cuda', type=str,
help="device to run benchmark on")
# common inference / train args
parser.add_argument('--model', '-m', metavar='NAME', default='resnet50',

@ -27,7 +27,7 @@ NON_STD_FILTERS = [
'vit_*', 'tnt_*', 'pit_*', 'swin_*', 'coat_*', 'cait_*', '*mixer_*', 'gmlp_*', 'resmlp_*', 'twins_*',
'convit_*', 'levit*', 'visformer*', 'deit*', 'jx_nest_*', 'nest_*', 'xcit_*', 'crossvit_*', 'beit*',
'poolformer_*', 'volo_*', 'sequencer2d_*', 'swinv2_*', 'pvt_v2*', 'mvitv2*', 'gcvit*', 'efficientformer*',
'coatnet*', 'coatnext*', 'maxvit*', 'maxxvit*',
'coatnet*', 'coatnext*', 'maxvit*', 'maxxvit*', 'eva_*'
]
NUM_NON_STD = len(NON_STD_FILTERS)
@ -39,7 +39,7 @@ if 'GITHUB_ACTIONS' in os.environ:
'*nfnet_f3*', '*nfnet_f4*', '*nfnet_f5*', '*nfnet_f6*', '*nfnet_f7*', '*efficientnetv2_xl*',
'*resnetrs350*', '*resnetrs420*', 'xcit_large_24_p8*', 'vit_huge*', 'vit_gi*', 'swin*huge*',
'swin*giant*']
NON_STD_EXCLUDE_FILTERS = ['vit_huge*', 'vit_gi*', 'swin*giant*']
NON_STD_EXCLUDE_FILTERS = ['vit_huge*', 'vit_gi*', 'swin*giant*', 'eva_giant*']
else:
EXCLUDE_FILTERS = []
NON_STD_EXCLUDE_FILTERS = ['vit_gi*']

@ -62,10 +62,11 @@ class PretrainedCfg:
def filter_pretrained_cfg(cfg, remove_source=False, remove_null=True):
filtered_cfg = {}
keep_none = {'pool_size', 'first_conv', 'classifier'} # always keep these keys, even if none
for k, v in cfg.items():
if remove_source and k in {'url', 'file', 'hf_hub_id', 'hf_hub_id', 'hf_hub_filename', 'source'}:
continue
if remove_null and v is None:
if remove_null and v is None and k not in keep_none:
continue
filtered_cfg[k] = v
return filtered_cfg

@ -1,8 +1,6 @@
""" BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)
""" BEiT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)
Model from official source: https://github.com/microsoft/unilm/tree/master/beit
and
https://github.com/microsoft/unilm/tree/master/beit2
@inproceedings{beit,
title={{BEiT}: {BERT} Pre-Training of Image Transformers},
@ -12,6 +10,8 @@ year={2022},
url={https://openreview.net/forum?id=p-BhZSz59o4}
}
BEiT-v2 from https://github.com/microsoft/unilm/tree/master/beit2
@article{beitv2,
title={{BEiT v2}: Masked Image Modeling with Vector-Quantized Visual Tokenizers},
author={Zhiliang Peng and Li Dong and Hangbo Bao and Qixiang Ye and Furu Wei},
@ -21,6 +21,17 @@ archivePrefix={arXiv},
primaryClass={cs.CV}
}
EVA from https://github.com/baaivision/EVA , paper: https://arxiv.org/abs/2211.07636
@article{EVA,
title={EVA: Exploring the Limits of Masked Visual Representation Learning at Scale},
author={Fang, Yuxin and Wang, Wen and Xie, Binhui and Sun, Quan and Wu, Ledell and Wang, Xinggang and Huang,
Tiejun and Wang, Xinlong and Cao, Yue},
journal={arXiv preprint arXiv:2211.07636},
year={2022}
}
At this point only the 1k fine-tuned classification weights and model configs have been added,
see original source above for pre-training models and procedure.
@ -37,6 +48,9 @@ Modifications by / Copyright 2021 Ross Wightman, original copyrights below
# https://github.com/facebookresearch/deit/
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
# EVA models Copyright (c) 2022 BAAI-Vision
import math
from functools import partial
from typing import Optional, Tuple
@ -49,69 +63,12 @@ from torch.utils.checkpoint import checkpoint
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
from timm.layers import PatchEmbed, Mlp, DropPath, trunc_normal_
from ._builder import build_model_with_cfg
from ._pretrained import generate_default_cfgs
from ._registry import register_model
from .vision_transformer import checkpoint_filter_fn
__all__ = ['Beit']
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = {
'beit_base_patch16_224': _cfg(
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22kto1k.pth'),
'beit_base_patch16_384': _cfg(
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_384_pt22k_ft22kto1k.pth',
input_size=(3, 384, 384), crop_pct=1.0,
),
'beit_base_patch16_224_in22k': _cfg(
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22k.pth',
num_classes=21841,
),
'beit_large_patch16_224': _cfg(
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22kto1k.pth'),
'beit_large_patch16_384': _cfg(
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_384_pt22k_ft22kto1k.pth',
input_size=(3, 384, 384), crop_pct=1.0,
),
'beit_large_patch16_512': _cfg(
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_512_pt22k_ft22kto1k.pth',
input_size=(3, 512, 512), crop_pct=1.0,
),
'beit_large_patch16_224_in22k': _cfg(
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth',
num_classes=21841,
),
'beitv2_base_patch16_224': _cfg(
url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21kto1k.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
),
'beitv2_base_patch16_224_in22k': _cfg(
url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21k.pth',
num_classes=21841,
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
),
'beitv2_large_patch16_224': _cfg(
url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21kto1k.pth',
crop_pct=0.95,
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
),
'beitv2_large_patch16_224_in22k': _cfg(
url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21k.pth',
num_classes=21841,
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
),
}
def gen_relative_position_index(window_size: Tuple[int, int]) -> torch.Tensor:
num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
@ -385,6 +342,82 @@ class Beit(nn.Module):
return x
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = generate_default_cfgs({
'beit_base_patch16_224.in22k_ft_in22k_in1k': _cfg(
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22kto1k.pth'),
'beit_base_patch16_384.in22k_ft_in22k_in1k': _cfg(
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_384_pt22k_ft22kto1k.pth',
input_size=(3, 384, 384), crop_pct=1.0,
),
'beit_base_patch16_224.in22k_ft_in22k': _cfg(
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22k.pth',
num_classes=21841,
),
'beit_large_patch16_224.in22k_ft_in22k_in1k': _cfg(
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22kto1k.pth'),
'beit_large_patch16_384.in22k_ft_in22k_in1k': _cfg(
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_384_pt22k_ft22kto1k.pth',
input_size=(3, 384, 384), crop_pct=1.0,
),
'beit_large_patch16_512.in22k_ft_in22k_in1k': _cfg(
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_512_pt22k_ft22kto1k.pth',
input_size=(3, 512, 512), crop_pct=1.0,
),
'beit_large_patch16_224.in22k_ft_in22k': _cfg(
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth',
num_classes=21841,
),
'beitv2_base_patch16_224.in1k_ft_in22k_in1k': _cfg(
url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21kto1k.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
),
'beitv2_base_patch16_224.in1k_ft_in22k': _cfg(
url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21k.pth',
num_classes=21841,
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
),
'beitv2_large_patch16_224.in1k_ft_in22k_in1k': _cfg(
url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21kto1k.pth',
crop_pct=0.95,
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
),
'beitv2_large_patch16_224.in1k_ft_in22k': _cfg(
url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21k.pth',
num_classes=21841,
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
),
'eva_giant_patch14_224.clip_ft_in1k': _cfg(
hf_hub_id='BAAI/EVA', hf_hub_filename='eva_clip_vis_enc_sz224_ftcls_89p1.pt',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0,
),
'eva_giant_patch14_336.clip_ft_in1k': _cfg(
hf_hub_id='BAAI/EVA', hf_hub_filename='eva_clip_vis_enc_sz336_ftcls_89p4.pt',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 336, 336), crop_pct=1.0, crop_mode='squash'),
'eva_giant_patch14_336.m30m_ft_in22k_in1k': _cfg(
hf_hub_id='BAAI/EVA', hf_hub_filename='eva_21k_1k_336px_psz14_ema_89p6.pt',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD,
input_size=(3, 336, 336), crop_pct=1.0, crop_mode='squash'),
'eva_giant_patch14_560.m30m_ft_in22k_in1k': _cfg(
hf_hub_id='BAAI/EVA', hf_hub_filename='eva_21k_1k_560px_psz14_ema_89p7.pt',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD,
input_size=(3, 560, 560), crop_pct=1.0, crop_mode='squash'),
})
def _beit_checkpoint_filter_fn(state_dict, model):
if 'module' in state_dict:
# beit v2 didn't strip module
@ -394,7 +427,7 @@ def _beit_checkpoint_filter_fn(state_dict, model):
def _create_beit(variant, pretrained=False, **kwargs):
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Beit models.')
raise RuntimeError('features_only not implemented for BEiT models.')
model = build_model_with_cfg(
Beit, variant, pretrained,
@ -416,25 +449,16 @@ def beit_base_patch16_224(pretrained=False, **kwargs):
@register_model
def beit_base_patch16_384(pretrained=False, **kwargs):
model_kwargs = dict(
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, **kwargs)
model = _create_beit('beit_base_patch16_384', pretrained=pretrained, **model_kwargs)
return model
@register_model
def beit_base_patch16_224_in22k(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, **kwargs)
model = _create_beit('beit_base_patch16_224_in22k', pretrained=pretrained, **model_kwargs)
return model
@register_model
def beit_large_patch16_224(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
patch_size=16, embed_dim=1024, depth=24, num_heads=16,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
model = _create_beit('beit_large_patch16_224', pretrained=pretrained, **model_kwargs)
return model
@ -443,7 +467,7 @@ def beit_large_patch16_224(pretrained=False, **kwargs):
@register_model
def beit_large_patch16_384(pretrained=False, **kwargs):
model_kwargs = dict(
img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
model = _create_beit('beit_large_patch16_384', pretrained=pretrained, **model_kwargs)
return model
@ -452,52 +476,52 @@ def beit_large_patch16_384(pretrained=False, **kwargs):
@register_model
def beit_large_patch16_512(pretrained=False, **kwargs):
model_kwargs = dict(
img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
model = _create_beit('beit_large_patch16_512', pretrained=pretrained, **model_kwargs)
return model
@register_model
def beit_large_patch16_224_in22k(pretrained=False, **kwargs):
def beitv2_base_patch16_224(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
model = _create_beit('beit_large_patch16_224_in22k', pretrained=pretrained, **model_kwargs)
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
model = _create_beit('beitv2_base_patch16_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def beitv2_base_patch16_224(pretrained=False, **kwargs):
def beitv2_large_patch16_224(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
model = _create_beit('beitv2_base_patch16_224', pretrained=pretrained, **model_kwargs)
patch_size=16, embed_dim=1024, depth=24, num_heads=16,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
model = _create_beit('beitv2_large_patch16_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def beitv2_base_patch16_224_in22k(pretrained=False, **kwargs):
def eva_giant_patch14_224(pretrained=False, **kwargs):
""" EVA-g model https://arxiv.org/abs/2211.07636 """
model_kwargs = dict(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
model = _create_beit('beitv2_base_patch16_224_in22k', pretrained=pretrained, **model_kwargs)
patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408, **kwargs)
model = _create_beit('eva_giant_patch14_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def beitv2_large_patch16_224(pretrained=False, **kwargs):
def eva_giant_patch14_336(pretrained=False, **kwargs):
""" EVA-g model https://arxiv.org/abs/2211.07636 """
model_kwargs = dict(
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
model = _create_beit('beitv2_large_patch16_224', pretrained=pretrained, **model_kwargs)
patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408, **kwargs)
model = _create_beit('eva_giant_patch14_336', pretrained=pretrained, **model_kwargs)
return model
@register_model
def beitv2_large_patch16_224_in22k(pretrained=False, **kwargs):
def eva_giant_patch14_560(pretrained=False, **kwargs):
""" EVA-g model https://arxiv.org/abs/2211.07636 """
model_kwargs = dict(
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
model = _create_beit('beitv2_large_patch16_224_in22k', pretrained=pretrained, **model_kwargs)
patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408, **kwargs)
model = _create_beit('eva_giant_patch14_560', pretrained=pretrained, **model_kwargs)
return model

@ -938,6 +938,25 @@ default_cfgs = generate_default_cfgs({
'vit_small_patch16_36x1_224': _cfg(url=''),
'vit_small_patch16_18x2_224': _cfg(url=''),
'vit_base_patch16_18x2_224': _cfg(url=''),
# EVA fine-tuned weights from MAE style MIM - EVA-CLIP target pretrain
# https://github.com/baaivision/EVA/blob/7ecf2c0a370d97967e86d047d7af9188f78d2df3/eva/README.md#eva-l-learning-better-mim-representations-from-eva-clip
'eva_large_patch14_196.in22k_ft_in22k_in1k': _cfg(
hf_hub_id='BAAI/EVA', hf_hub_filename='eva_l_psz14_196px_21k_to_1k_ft_88p6.pt',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 196, 196), crop_pct=1.0),
'eva_large_patch14_336.in22k_ft_in22k_in1k': _cfg(
hf_hub_id='BAAI/EVA', hf_hub_filename='eva_l_psz14_336px_21k_to_1k_ft_89p2.pt',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 336, 336), crop_pct=1.0, crop_mode='squash'),
'eva_large_patch14_196.in22k_ft_in1k': _cfg(
hf_hub_id='BAAI/EVA', hf_hub_filename='eva_l_psz14_196px_1k_ft_88p0.pt',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 196, 196), crop_pct=1.0),
'eva_large_patch14_336.in22k_ft_in1k': _cfg(
hf_hub_id='BAAI/EVA', hf_hub_filename='eva_l_psz14_336px_1k_ft_88p65.pt',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 336, 336), crop_pct=1.0, crop_mode='squash'),
})
@ -1359,3 +1378,21 @@ def vit_base_patch16_18x2_224(pretrained=False, **kwargs):
patch_size=16, embed_dim=768, depth=18, num_heads=12, init_values=1e-5, block_fn=ParallelBlock, **kwargs)
model = _create_vision_transformer('vit_base_patch16_18x2_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def eva_large_patch14_196(pretrained=False, **kwargs):
""" EVA-large model https://arxiv.org/abs/2211.07636 /via MAE MIM pretrain"""
model_kwargs = dict(
patch_size=14, embed_dim=1024, depth=24, num_heads=16, global_pool='avg', **kwargs)
model = _create_vision_transformer('eva_large_patch14_196', pretrained=pretrained, **model_kwargs)
return model
@register_model
def eva_large_patch14_336(pretrained=False, **kwargs):
""" EVA-large model https://arxiv.org/abs/2211.07636 via MAE MIM pretrain"""
model_kwargs = dict(
patch_size=14, embed_dim=1024, depth=24, num_heads=16, global_pool='avg', **kwargs)
model = _create_vision_transformer('eva_large_patch14_336', pretrained=pretrained, **model_kwargs)
return model

@ -969,16 +969,16 @@ def validate(
with amp_autocast():
output = model(input)
if isinstance(output, (tuple, list)):
output = output[0]
if isinstance(output, (tuple, list)):
output = output[0]
# augmentation reduction
reduce_factor = args.tta
if reduce_factor > 1:
output = output.unfold(0, reduce_factor, reduce_factor).mean(dim=2)
target = target[0:target.size(0):reduce_factor]
# augmentation reduction
reduce_factor = args.tta
if reduce_factor > 1:
output = output.unfold(0, reduce_factor, reduce_factor).mean(dim=2)
target = target[0:target.size(0):reduce_factor]
loss = loss_fn(output, target)
loss = loss_fn(output, target)
acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
if args.distributed:

@ -296,9 +296,9 @@ def validate(args):
with amp_autocast():
output = model(input)
if valid_labels is not None:
output = output[:, valid_labels]
loss = criterion(output, target)
if valid_labels is not None:
output = output[:, valid_labels]
loss = criterion(output, target)
if real_labels is not None:
real_labels.add_result(output)

Loading…
Cancel
Save