Add latest CLIP ViT fine-tune pretrained configs / model entrypt updates

pull/1520/head
Ross Wightman 2 years ago
parent 2eb825c014
commit d3415e3134

@ -40,237 +40,6 @@ from .registry import register_model
_logger = logging.getLogger(__name__)
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = generate_defaults({
# patch models (weights from official Google JAX impl)
'vit_tiny_patch16_224.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz',
custom_load=True),
'vit_tiny_patch16_384.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_small_patch32_224.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz',
custom_load=True),
'vit_small_patch32_384.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_small_patch16_224.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz',
custom_load=True),
'vit_small_patch16_384.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_base_patch32_224.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz',
custom_load=True),
'vit_base_patch32_384.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_light1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_base_patch16_224.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz',
custom_load=True),
'vit_base_patch16_384.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_base_patch8_224.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz',
custom_load=True),
'vit_large_patch32_384.v1_in21k_ft_1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth',
input_size=(3, 384, 384), crop_pct=1.0),
'vit_large_patch16_224.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz',
custom_load=True),
'vit_large_patch16_384.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_large_patch14_224.untrained': _cfg(url=''),
'vit_huge_patch14_224.untrained': _cfg(url=''),
'vit_giant_patch14_224.untrained': _cfg(url=''),
'vit_gigantic_patch14_224.untrained': _cfg(url=''),
# patch models, imagenet21k (weights from official Google JAX impl)
'vit_tiny_patch16_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz',
custom_load=True, num_classes=21843),
'vit_small_patch32_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz',
custom_load=True, num_classes=21843),
'vit_small_patch16_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz',
custom_load=True, num_classes=21843),
'vit_base_patch32_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0.npz',
custom_load=True, num_classes=21843),
'vit_base_patch16_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz',
custom_load=True, num_classes=21843),
'vit_base_patch8_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz',
custom_load=True, num_classes=21843),
'vit_large_patch32_224.v1_in21k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth',
num_classes=21843),
'vit_large_patch16_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1.npz',
custom_load=True, num_classes=21843),
'vit_huge_patch14_224.v1_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/imagenet21k/ViT-H_14.npz',
hf_hub_id='timm/vit_huge_patch14_224_in21k',
custom_load=True, num_classes=21843),
# SAM trained models (https://arxiv.org/abs/2106.01548)
'vit_base_patch32_224.sam': _cfg(
url='https://storage.googleapis.com/vit_models/sam/ViT-B_32.npz', custom_load=True),
'vit_base_patch16_224.sam': _cfg(
url='https://storage.googleapis.com/vit_models/sam/ViT-B_16.npz', custom_load=True),
# DINO pretrained - https://arxiv.org/abs/2104.14294 (no classifier head, for fine-tune only)
'vit_small_patch16_224.dino': _cfg(
url='https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
'vit_small_patch8_224.dino': _cfg(
url='https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deitsmall8_pretrain.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
'vit_base_patch16_224.dino': _cfg(
url='https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
'vit_base_patch8_224.dino': _cfg(
url='https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
# ViT ImageNet-21K-P pretraining by MILL
'vit_base_patch16_224_miil.in21k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/vit_base_patch16_224_in21k_miil-887286df.pth',
mean=(0., 0., 0.), std=(1., 1., 1.), crop_pct=0.875, interpolation='bilinear', num_classes=11221),
'vit_base_patch16_224_miil.in21k_ft_1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/vit_base_patch16_224_1k_miil_84_4-2deb18e3.pth',
mean=(0., 0., 0.), std=(1., 1., 1.), crop_pct=0.875, interpolation='bilinear'),
# custom timm variants
'vit_base_patch16_rpn_224.in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_base_patch16_rpn_224-sw-3b07e89d.pth'),
'vit_medium_patch16_gap_240.in12k': _cfg(
url='',
input_size=(3, 240, 240), crop_pct=0.95, num_classes=11821),
'vit_medium_patch16_gap_256.in12k_ft_1k': _cfg(
url='',
input_size=(3, 256, 256), crop_pct=0.95),
'vit_medium_patch16_gap_384.in12k_ft_1k': _cfg(
url='',
input_size=(3, 384, 384), crop_pct=0.95),
# CLIP pretrained image tower and related fine-tuned weights
'vit_base_patch32_clip_224.laion2b': _cfg(
hf_hub_id='laion/CLIP-ViT-B-32-laion2B-s34B-b79K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512),
'vit_large_patch14_clip_224.laion2b': _cfg(
hf_hub_id='laion/CLIP-ViT-L-14-laion2B-s32B-b82K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, num_classes=768),
'vit_huge_patch14_clip_224.laion2b': _cfg(
hf_hub_id='laion/CLIP-ViT-H-14-laion2B-s32B-b79K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=1024),
'vit_giant_patch14_clip_224.laion2b': _cfg(
hf_hub_id='laion/CLIP-ViT-g-14-laion2B-s12B-b42K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=1024),
'vit_base_patch32_clip_224.laion2b_ft_in1k': _cfg(
hf_hub_id='',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_large_patch14_clip_224.laion2b_ft_in1k': _cfg(
hf_hub_id='',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
'vit_huge_patch14_clip_224.laion2b_ft_in1k': _cfg(
hf_hub_id='',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_base_patch32_clip_224.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_large_patch14_clip_224.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
'vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_base_patch32_clip_224.laion2b_ft_in12k': _cfg(
hf_hub_id='',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821),
'vit_large_patch14_clip_224.laion2b_ft_in12k': _cfg(
hf_hub_id='',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, num_classes=11821),
'vit_huge_patch14_clip_224.laion2b_ft_in12k': _cfg(
hf_hub_id='',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821),
'vit_base_patch32_clip_224.openai': _cfg(
hf_hub_id='timm/clip_vit_base_patch32_224.openai',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512),
'vit_base_patch16_clip_224.openai': _cfg(
hf_hub_id='timm/clip_vit_base_patch16_224.openai',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512),
'vit_large_patch14_clip_224.openai': _cfg(
hf_hub_id='timm/clip_vit_large_patch14_224.openai',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=768),
'vit_base_patch32_clip_224.openai_ft_in1k': _cfg(
hf_hub_id='timm/vit_base_patch32_clip_224.openai_ft_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_base_patch16_clip_224.openai_ft_in1k': _cfg(
hf_hub_id='timm/vit_base_patch16_clip_224.openai_ft_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_large_patch14_clip_224.openai_ft_in1k': _cfg(
hf_hub_id='timm/vit_large_patch14_clip_224.openai_ft_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_base_patch32_clip_224.openai_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_base_patch32_clip_224.openai_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_base_patch16_clip_224.openai_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_base_patch16_clip_224.openai_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_large_patch14_clip_224.openai_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_large_patch14_clip_224.openai_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_base_patch32_clip_224.openai_ft_in12k': _cfg(
hf_hub_id='timm/vit_base_patch32_clip_224.openai_ft_in12k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821),
'vit_base_patch16_clip_224.openai_ft_in12k': _cfg(
hf_hub_id='timm/vit_base_patch16_clip_224.openai_ft_in12k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821),
'vit_large_patch14_clip_224.openai_ft_in12k': _cfg(
hf_hub_id='timm/vit_large_patch14_clip_224.openai_ft_in12k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821),
# experimental (may be removed)
'vit_base_patch32_plus_256': _cfg(url='', input_size=(3, 256, 256), crop_pct=0.95),
'vit_base_patch16_plus_240': _cfg(url='', input_size=(3, 240, 240), crop_pct=0.95),
'vit_small_patch16_36x1_224': _cfg(url=''),
'vit_small_patch16_18x2_224': _cfg(url=''),
'vit_base_patch16_18x2_224': _cfg(url=''),
})
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
super().__init__()
@ -850,6 +619,280 @@ def checkpoint_filter_fn(state_dict, model, adapt_layer_scale=False):
return out_dict
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = generate_defaults({
# patch models (weights from official Google JAX impl)
'vit_tiny_patch16_224.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz',
custom_load=True),
'vit_tiny_patch16_384.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_small_patch32_224.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz',
custom_load=True),
'vit_small_patch32_384.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_small_patch16_224.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz',
custom_load=True),
'vit_small_patch16_384.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_base_patch32_224.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz',
custom_load=True),
'vit_base_patch32_384.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_light1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_base_patch16_224.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz',
custom_load=True),
'vit_base_patch16_384.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_base_patch8_224.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz',
custom_load=True),
'vit_large_patch32_384.v1_in21k_ft_1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth',
input_size=(3, 384, 384), crop_pct=1.0),
'vit_large_patch16_224.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz',
custom_load=True),
'vit_large_patch16_384.augreg_in21k_ft_1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_large_patch14_224.untrained': _cfg(url=''),
'vit_huge_patch14_224.untrained': _cfg(url=''),
'vit_giant_patch14_224.untrained': _cfg(url=''),
'vit_gigantic_patch14_224.untrained': _cfg(url=''),
# patch models, imagenet21k (weights from official Google JAX impl)
'vit_tiny_patch16_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz',
custom_load=True, num_classes=21843),
'vit_small_patch32_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz',
custom_load=True, num_classes=21843),
'vit_small_patch16_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz',
custom_load=True, num_classes=21843),
'vit_base_patch32_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0.npz',
custom_load=True, num_classes=21843),
'vit_base_patch16_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz',
custom_load=True, num_classes=21843),
'vit_base_patch8_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz',
custom_load=True, num_classes=21843),
'vit_large_patch32_224.v1_in21k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth',
num_classes=21843),
'vit_large_patch16_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1.npz',
custom_load=True, num_classes=21843),
'vit_huge_patch14_224.v1_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/imagenet21k/ViT-H_14.npz',
hf_hub_id='timm/vit_huge_patch14_224_in21k',
custom_load=True, num_classes=21843),
# SAM trained models (https://arxiv.org/abs/2106.01548)
'vit_base_patch32_224.sam': _cfg(
url='https://storage.googleapis.com/vit_models/sam/ViT-B_32.npz', custom_load=True),
'vit_base_patch16_224.sam': _cfg(
url='https://storage.googleapis.com/vit_models/sam/ViT-B_16.npz', custom_load=True),
# DINO pretrained - https://arxiv.org/abs/2104.14294 (no classifier head, for fine-tune only)
'vit_small_patch16_224.dino': _cfg(
url='https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
'vit_small_patch8_224.dino': _cfg(
url='https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deitsmall8_pretrain.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
'vit_base_patch16_224.dino': _cfg(
url='https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
'vit_base_patch8_224.dino': _cfg(
url='https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
# ViT ImageNet-21K-P pretraining by MILL
'vit_base_patch16_224_miil.in21k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/vit_base_patch16_224_in21k_miil-887286df.pth',
mean=(0., 0., 0.), std=(1., 1., 1.), crop_pct=0.875, interpolation='bilinear', num_classes=11221),
'vit_base_patch16_224_miil.in21k_ft_1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/vit_base_patch16_224_1k_miil_84_4-2deb18e3.pth',
mean=(0., 0., 0.), std=(1., 1., 1.), crop_pct=0.875, interpolation='bilinear'),
# custom timm variants
'vit_base_patch16_rpn_224.in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_base_patch16_rpn_224-sw-3b07e89d.pth'),
'vit_medium_patch16_gap_240.in12k': _cfg(
url='',
input_size=(3, 240, 240), crop_pct=0.95, num_classes=11821),
'vit_medium_patch16_gap_256.in12k_ft_1k': _cfg(
url='',
input_size=(3, 256, 256), crop_pct=0.95),
'vit_medium_patch16_gap_384.in12k_ft_1k': _cfg(
url='',
input_size=(3, 384, 384), crop_pct=0.95),
# CLIP pretrained image tower and related fine-tuned weights
'vit_base_patch32_clip_224.laion2b': _cfg(
hf_hub_id='laion/CLIP-ViT-B-32-laion2B-s34B-b79K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512),
'vit_base_patch16_clip_224.laion2b': _cfg(
#hf_hub_id='laion/CLIP-ViT-B-16-laion2B-s34B-b88K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512),
'vit_large_patch14_clip_224.laion2b': _cfg(
hf_hub_id='laion/CLIP-ViT-L-14-laion2B-s32B-b82K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0, num_classes=768),
'vit_huge_patch14_clip_224.laion2b': _cfg(
hf_hub_id='laion/CLIP-ViT-H-14-laion2B-s32B-b79K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=1024),
'vit_giant_patch14_clip_224.laion2b': _cfg(
hf_hub_id='laion/CLIP-ViT-g-14-laion2B-s12B-b42K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=1024),
'vit_base_patch32_clip_224.laion2b_ft_in1k': _cfg(
hf_hub_id='timm/vit_base_patch32_clip_224.laion2b_ft_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_base_patch32_clip_384.laion2b_ft_in1k': _cfg(
hf_hub_id='timm/vit_base_patch32_clip_384.laion2b_ft_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 384, 384)),
'vit_base_patch16_clip_224.laion2b_ft_in1k': _cfg(
#hf_hub_id='timm/vit_base_patch16_clip_224.laion2b_ft_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_base_patch16_clip_384.laion2b_ft_in1k': _cfg(
#hf_hub_id='timm/vit_base_patch16_clip_384.laion2b_ft_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 384, 384)),
'vit_base_patch32_clip_448.laion2b_ft_in1k': _cfg(
hf_hub_id='timm/vit_base_patch32_clip_448.laion2b_ft_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 448, 448)),
'vit_large_patch14_clip_224.laion2b_ft_in1k': _cfg(
hf_hub_id='timm/vit_large_patch14_clip_224.laion2b_ft_in1k',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0),
'vit_large_patch14_clip_336.laion2b_ft_in1k': _cfg(
hf_hub_id='timm/vit_large_patch14_clip_336.laion2b_ft_in1k',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0, input_size=(3, 336, 336)),
'vit_huge_patch14_clip_224.laion2b_ft_in1k': _cfg(
hf_hub_id='timm/vit_huge_patch14_clip_224.laion2b_ft_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0),
'vit_huge_patch14_clip_336.laion2b_ft_in1k': _cfg(
hf_hub_id='',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 336, 336)),
'vit_base_patch32_clip_224.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_base_patch32_clip_224.laion2b_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_base_patch32_clip_384.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_base_patch32_clip_384.laion2b_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 384, 384)),
'vit_base_patch32_clip_448.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_base_patch32_clip_448.laion2b_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 448, 448)),
'vit_base_patch16_clip_224.laion2b_ft_in12k_in1k': _cfg(
#hf_hub_id='timm/vit_base_patch16_clip_224.laion2b_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_base_patch16_clip_384.laion2b_ft_in12k_in1k': _cfg(
#hf_hub_id='timm/vit_base_patch16_clip_384.laion2b_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 384, 384)),
'vit_large_patch14_clip_224.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_large_patch14_clip_224.laion2b_ft_in12k_in1k',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0),
'vit_large_patch14_clip_336.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_large_patch14_clip_336.laion2b_ft_in12k_in1k',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0, input_size=(3, 336, 336)),
'vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0),
'vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 336, 336)),
'vit_base_patch32_clip_224.laion2b_ft_in12k': _cfg(
hf_hub_id='timm/vit_base_patch32_clip_224.laion2b_ft_in12k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821),
'vit_base_patch16_clip_224.laion2b_ft_in12k': _cfg(
#hf_hub_id='timm/vit_base_patch16_clip_224.laion2b_ft_in12k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821),
'vit_large_patch14_clip_224.laion2b_ft_in12k': _cfg(
hf_hub_id='timm/vit_large_patch14_clip_224.laion2b_ft_in12k',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0, num_classes=11821),
'vit_huge_patch14_clip_224.laion2b_ft_in12k': _cfg(
hf_hub_id='timm/vit_huge_patch14_clip_224.laion2b_ft_in12k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=11821),
'vit_base_patch32_clip_224.openai': _cfg(
hf_hub_id='timm/clip_vit_base_patch32_224.openai',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512),
'vit_base_patch16_clip_224.openai': _cfg(
hf_hub_id='timm/clip_vit_base_patch16_224.openai',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512),
'vit_large_patch14_clip_224.openai': _cfg(
hf_hub_id='timm/clip_vit_large_patch14_224.openai',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=768),
'vit_base_patch32_clip_224.openai_ft_in1k': _cfg(
#hf_hub_id='timm/vit_base_patch32_clip_224.openai_ft_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_base_patch16_clip_224.openai_ft_in1k': _cfg(
#hf_hub_id='timm/vit_base_patch16_clip_224.openai_ft_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_large_patch14_clip_224.openai_ft_in1k': _cfg(
hf_hub_id='timm/vit_large_patch14_clip_224.openai_ft_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0),
'vit_base_patch32_clip_224.openai_ft_in12k_in1k': _cfg(
#hf_hub_id='timm/vit_base_patch32_clip_224.openai_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_base_patch16_clip_224.openai_ft_in12k_in1k': _cfg(
#hf_hub_id='timm/vit_base_patch16_clip_224.openai_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_large_patch14_clip_224.openai_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_large_patch14_clip_224.openai_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0),
'vit_base_patch32_clip_224.openai_ft_in12k': _cfg(
#hf_hub_id='timm/vit_base_patch32_clip_224.openai_ft_in12k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821),
'vit_base_patch16_clip_224.openai_ft_in12k': _cfg(
#hf_hub_id='timm/vit_base_patch16_clip_224.openai_ft_in12k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821),
'vit_large_patch14_clip_224.openai_ft_in12k': _cfg(
hf_hub_id='timm/vit_large_patch14_clip_224.openai_ft_in12k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=11821),
# experimental (may be removed)
'vit_base_patch32_plus_256': _cfg(url='', input_size=(3, 256, 256), crop_pct=0.95),
'vit_base_patch16_plus_240': _cfg(url='', input_size=(3, 240, 240), crop_pct=0.95),
'vit_small_patch16_36x1_224': _cfg(url=''),
'vit_small_patch16_18x2_224': _cfg(url=''),
'vit_base_patch16_18x2_224': _cfg(url=''),
})
def _create_vision_transformer(variant, pretrained=False, **kwargs):
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Vision Transformer models.')
@ -1094,8 +1137,7 @@ def vit_medium_patch16_gap_384(pretrained=False, **kwargs):
@register_model
def vit_base_patch32_clip_224(pretrained=False, **kwargs):
""" ViT-B/32
Pretrained weights from CLIP image tower trained on LAION-2B image-text pairs.
""" ViT-B/32 CLIP image tower @ 224x224
"""
model_kwargs = dict(
patch_size=32, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm, **kwargs)
@ -1103,10 +1145,29 @@ def vit_base_patch32_clip_224(pretrained=False, **kwargs):
return model
@register_model
def vit_base_patch32_clip_384(pretrained=False, **kwargs):
""" ViT-B/32 CLIP image tower @ 384x384
"""
model_kwargs = dict(
patch_size=32, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm, **kwargs)
model = _create_vision_transformer('vit_base_patch32_clip_384', pretrained=pretrained, **model_kwargs)
return model
@register_model
def vit_base_patch32_clip_448(pretrained=False, **kwargs):
""" ViT-B/32 CLIP image tower @ 448x448
"""
model_kwargs = dict(
patch_size=32, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm, **kwargs)
model = _create_vision_transformer('vit_base_patch32_clip_448', pretrained=pretrained, **model_kwargs)
return model
@register_model
def vit_base_patch16_clip_224(pretrained=False, **kwargs):
""" ViT-B/16
Pretrained weights from CLIP image tower trained on LAION-2B image-text pairs.
""" ViT-B/16 CLIP image tower
"""
model_kwargs = dict(
patch_size=16, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm, **kwargs)
@ -1116,8 +1177,7 @@ def vit_base_patch16_clip_224(pretrained=False, **kwargs):
@register_model
def vit_large_patch14_clip_224(pretrained=False, **kwargs):
""" ViT-Large model (ViT-L/14)
Pretrained weights from CLIP image tower trained on LAION-2B image-text pairs.
""" ViT-Large model (ViT-L/14) CLIP image tower
"""
model_kwargs = dict(
patch_size=14, embed_dim=1024, depth=24, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm, **kwargs)
@ -1125,10 +1185,19 @@ def vit_large_patch14_clip_224(pretrained=False, **kwargs):
return model
@register_model
def vit_large_patch14_clip_336(pretrained=False, **kwargs):
""" ViT-Large model (ViT-L/14) CLIP image tower @ 336x336
"""
model_kwargs = dict(
patch_size=14, embed_dim=1024, depth=24, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm, **kwargs)
model = _create_vision_transformer('vit_large_patch14_clip_336', pretrained=pretrained, **model_kwargs)
return model
@register_model
def vit_huge_patch14_clip_224(pretrained=False, **kwargs):
""" ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).
Pretrained weights from CLIP image tower trained on LAION-2B image-text pairs.
""" ViT-Huge model (ViT-H/14) CLIP image tower.
"""
model_kwargs = dict(
patch_size=14, embed_dim=1280, depth=32, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm, **kwargs)
@ -1136,10 +1205,20 @@ def vit_huge_patch14_clip_224(pretrained=False, **kwargs):
return model
@register_model
def vit_huge_patch14_clip_336(pretrained=False, **kwargs):
""" ViT-Huge model (ViT-H/14) CLIP image tower @ 336x336
"""
model_kwargs = dict(
patch_size=14, embed_dim=1280, depth=32, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm, **kwargs)
model = _create_vision_transformer('vit_huge_patch14_clip_336', pretrained=pretrained, **model_kwargs)
return model
@register_model
def vit_giant_patch14_clip_224(pretrained=False, **kwargs):
""" ViT-Giant (little-g) model (ViT-g/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560
Pretrained weights from CLIP image tower trained on LAION-2B image-text pairs.
Pretrained weights from CLIP image tower.
"""
model_kwargs = dict(
patch_size=14, embed_dim=1408, mlp_ratio=48/11, depth=40, num_heads=16,
@ -1211,5 +1290,3 @@ def vit_base_patch16_18x2_224(pretrained=False, **kwargs):
patch_size=16, embed_dim=768, depth=18, num_heads=12, init_values=1e-5, block_fn=ParallelBlock, **kwargs)
model = _create_vision_transformer('vit_base_patch16_18x2_224', pretrained=pretrained, **model_kwargs)
return model

Loading…
Cancel
Save