commit
c4ca016656
@ -0,0 +1,81 @@
|
||||
""" Split Attention Conv2d (for ResNeSt Models)
|
||||
|
||||
Paper: `ResNeSt: Split-Attention Networks` - /https://arxiv.org/abs/2004.08955
|
||||
|
||||
Adapted from original PyTorch impl at https://github.com/zhanghang1989/ResNeSt
|
||||
|
||||
Modified for torchscript compat, performance, and consistency with timm by Ross Wightman
|
||||
"""
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
|
||||
class RadixSoftmax(nn.Module):
|
||||
def __init__(self, radix, cardinality):
|
||||
super(RadixSoftmax, self).__init__()
|
||||
self.radix = radix
|
||||
self.cardinality = cardinality
|
||||
|
||||
def forward(self, x):
|
||||
batch = x.size(0)
|
||||
if self.radix > 1:
|
||||
x = x.view(batch, self.cardinality, self.radix, -1).transpose(1, 2)
|
||||
x = F.softmax(x, dim=1)
|
||||
x = x.reshape(batch, -1)
|
||||
else:
|
||||
x = torch.sigmoid(x)
|
||||
return x
|
||||
|
||||
|
||||
class SplitAttnConv2d(nn.Module):
|
||||
"""Split-Attention Conv2d
|
||||
"""
|
||||
def __init__(self, in_channels, channels, kernel_size, stride=1, padding=0,
|
||||
dilation=1, groups=1, bias=False, radix=2, reduction_factor=4,
|
||||
act_layer=nn.ReLU, norm_layer=None, drop_block=None, **kwargs):
|
||||
super(SplitAttnConv2d, self).__init__()
|
||||
self.radix = radix
|
||||
self.cardinality = groups
|
||||
self.channels = channels
|
||||
mid_chs = channels * radix
|
||||
attn_chs = max(in_channels * radix // reduction_factor, 32)
|
||||
self.conv = nn.Conv2d(
|
||||
in_channels, mid_chs, kernel_size, stride, padding, dilation,
|
||||
groups=groups * radix, bias=bias, **kwargs)
|
||||
self.bn0 = norm_layer(mid_chs) if norm_layer is not None else None
|
||||
self.act0 = act_layer(inplace=True)
|
||||
self.fc1 = nn.Conv2d(channels, attn_chs, 1, groups=self.cardinality)
|
||||
self.bn1 = norm_layer(attn_chs) if norm_layer is not None else None
|
||||
self.act1 = act_layer(inplace=True)
|
||||
self.fc2 = nn.Conv2d(attn_chs, mid_chs, 1, groups=self.cardinality)
|
||||
self.drop_block = drop_block
|
||||
self.rsoftmax = RadixSoftmax(radix, groups)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
if self.bn0 is not None:
|
||||
x = self.bn0(x)
|
||||
if self.drop_block is not None:
|
||||
x = self.drop_block(x)
|
||||
x = self.act0(x)
|
||||
|
||||
B, RC, H, W = x.shape
|
||||
if self.radix > 1:
|
||||
x = x.reshape((B, self.radix, RC // self.radix, H, W))
|
||||
x_gap = torch.sum(x, dim=1)
|
||||
else:
|
||||
x_gap = x
|
||||
x_gap = F.adaptive_avg_pool2d(x_gap, 1)
|
||||
x_gap = self.fc1(x_gap)
|
||||
if self.bn1 is not None:
|
||||
x_gap = self.bn1(x_gap)
|
||||
x_gap = self.act1(x_gap)
|
||||
x_attn = self.fc2(x_gap)
|
||||
|
||||
x_attn = self.rsoftmax(x_attn).view(B, -1, 1, 1)
|
||||
if self.radix > 1:
|
||||
out = (x * x_attn.reshape((B, self.radix, RC // self.radix, 1, 1))).sum(dim=1)
|
||||
else:
|
||||
out = x * x_attn
|
||||
return out.contiguous()
|
@ -0,0 +1,267 @@
|
||||
""" ResNeSt Models
|
||||
|
||||
Paper: `ResNeSt: Split-Attention Networks` - https://arxiv.org/abs/2004.08955
|
||||
|
||||
Adapted from original PyTorch impl w/ weights at https://github.com/zhanghang1989/ResNeSt by Hang Zhang
|
||||
|
||||
Modified for torchscript compat, and consistency with timm by Ross Wightman
|
||||
"""
|
||||
import math
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.models.layers import DropBlock2d
|
||||
from .helpers import load_pretrained
|
||||
from .layers import SelectiveKernelConv, ConvBnAct, create_attn
|
||||
from .layers.split_attn import SplitAttnConv2d
|
||||
from .registry import register_model
|
||||
from .resnet import ResNet
|
||||
|
||||
|
||||
def _cfg(url='', **kwargs):
|
||||
return {
|
||||
'url': url,
|
||||
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
||||
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
||||
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
||||
'first_conv': 'conv1', 'classifier': 'fc',
|
||||
**kwargs
|
||||
}
|
||||
|
||||
default_cfgs = {
|
||||
'resnest14d': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest14-9c8fe254.pth'),
|
||||
'resnest26d': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest26-50eb607c.pth'),
|
||||
'resnest50d': _cfg(
|
||||
url='https://hangzh.s3.amazonaws.com/encoding/models/resnest50-528c19ca.pth'),
|
||||
'resnest101e': _cfg(
|
||||
url='https://hangzh.s3.amazonaws.com/encoding/models/resnest101-22405ba7.pth', input_size=(3, 256, 256)),
|
||||
'resnest200e': _cfg(
|
||||
url='https://hangzh.s3.amazonaws.com/encoding/models/resnest200-75117900.pth', input_size=(3, 320, 320)),
|
||||
'resnest269e': _cfg(
|
||||
url='https://hangzh.s3.amazonaws.com/encoding/models/resnest269-0cc87c48.pth', input_size=(3, 416, 416)),
|
||||
'resnest50d_4s2x40d': _cfg(
|
||||
url='https://hangzh.s3.amazonaws.com/encoding/models/resnest50_fast_4s2x40d-41d14ed0.pth',
|
||||
interpolation='bicubic'),
|
||||
'resnest50d_1s4x24d': _cfg(
|
||||
url='https://hangzh.s3.amazonaws.com/encoding/models/resnest50_fast_1s4x24d-d4a4f76f.pth',
|
||||
interpolation='bicubic')
|
||||
}
|
||||
|
||||
|
||||
class ResNestBottleneck(nn.Module):
|
||||
"""ResNet Bottleneck
|
||||
"""
|
||||
# pylint: disable=unused-argument
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1, downsample=None,
|
||||
radix=1, cardinality=1, base_width=64, avd=False, avd_first=False, is_first=False,
|
||||
reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d,
|
||||
attn_layer=None, aa_layer=None, drop_block=None, drop_path=None):
|
||||
super(ResNestBottleneck, self).__init__()
|
||||
assert reduce_first == 1 # not supported
|
||||
assert attn_layer is None # not supported
|
||||
assert aa_layer is None # TODO not yet supported
|
||||
assert drop_path is None # TODO not yet supported
|
||||
|
||||
group_width = int(planes * (base_width / 64.)) * cardinality
|
||||
first_dilation = first_dilation or dilation
|
||||
if avd and (stride > 1 or is_first):
|
||||
avd_stride = stride
|
||||
stride = 1
|
||||
else:
|
||||
avd_stride = 0
|
||||
self.radix = radix
|
||||
|
||||
self.conv1 = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False)
|
||||
self.bn1 = norm_layer(group_width)
|
||||
self.drop_block1 = drop_block if drop_block is not None else None
|
||||
self.act1 = act_layer(inplace=True)
|
||||
self.avd_first = nn.AvgPool2d(3, avd_stride, padding=1) if avd_stride > 0 and avd_first else None
|
||||
|
||||
if self.radix >= 1:
|
||||
self.conv2 = SplitAttnConv2d(
|
||||
group_width, group_width, kernel_size=3, stride=stride, padding=first_dilation,
|
||||
dilation=first_dilation, groups=cardinality, radix=radix, norm_layer=norm_layer, drop_block=drop_block)
|
||||
self.bn2 = None # FIXME revisit, here to satisfy current torchscript fussyness
|
||||
self.drop_block2 = None
|
||||
self.act2 = None
|
||||
else:
|
||||
self.conv2 = nn.Conv2d(
|
||||
group_width, group_width, kernel_size=3, stride=stride, padding=first_dilation,
|
||||
dilation=first_dilation, groups=cardinality, bias=False)
|
||||
self.bn2 = norm_layer(group_width)
|
||||
self.drop_block2 = drop_block if drop_block is not None else None
|
||||
self.act2 = act_layer(inplace=True)
|
||||
self.avd_last = nn.AvgPool2d(3, avd_stride, padding=1) if avd_stride > 0 and not avd_first else None
|
||||
|
||||
self.conv3 = nn.Conv2d(group_width, planes * 4, kernel_size=1, bias=False)
|
||||
self.bn3 = norm_layer(planes*4)
|
||||
self.drop_block3 = drop_block if drop_block is not None else None
|
||||
self.act3 = act_layer(inplace=True)
|
||||
self.downsample = downsample
|
||||
|
||||
def zero_init_last_bn(self):
|
||||
nn.init.zeros_(self.bn3.weight)
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
if self.drop_block1 is not None:
|
||||
out = self.drop_block1(out)
|
||||
out = self.act1(out)
|
||||
|
||||
if self.avd_first is not None:
|
||||
out = self.avd_first(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
if self.bn2 is not None:
|
||||
out = self.bn2(out)
|
||||
if self.drop_block2 is not None:
|
||||
out = self.drop_block2(out)
|
||||
out = self.act2(out)
|
||||
|
||||
if self.avd_last is not None:
|
||||
out = self.avd_last(out)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
if self.drop_block3 is not None:
|
||||
out = self.drop_block3(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(x)
|
||||
|
||||
out += residual
|
||||
out = self.act3(out)
|
||||
return out
|
||||
|
||||
|
||||
@register_model
|
||||
def resnest14d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
||||
""" ResNeSt-14d model. Weights ported from GluonCV.
|
||||
"""
|
||||
default_cfg = default_cfgs['resnest14d']
|
||||
model = ResNet(
|
||||
ResNestBottleneck, [1, 1, 1, 1], num_classes=num_classes, in_chans=in_chans,
|
||||
stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1,
|
||||
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs)
|
||||
model.default_cfg = default_cfg
|
||||
if pretrained:
|
||||
load_pretrained(model, default_cfg, num_classes, in_chans)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def resnest26d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
||||
""" ResNeSt-26d model. Weights ported from GluonCV.
|
||||
"""
|
||||
default_cfg = default_cfgs['resnest26d']
|
||||
model = ResNet(
|
||||
ResNestBottleneck, [2, 2, 2, 2], num_classes=num_classes, in_chans=in_chans,
|
||||
stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1,
|
||||
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs)
|
||||
model.default_cfg = default_cfg
|
||||
if pretrained:
|
||||
load_pretrained(model, default_cfg, num_classes, in_chans)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def resnest50d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
||||
""" ResNeSt-50d model. Matches paper ResNeSt-50 model, https://arxiv.org/abs/2004.08955
|
||||
Since this codebase supports all possible variations, 'd' for deep stem, stem_width 32, avg in downsample.
|
||||
"""
|
||||
default_cfg = default_cfgs['resnest50d']
|
||||
model = ResNet(
|
||||
ResNestBottleneck, [3, 4, 6, 3], num_classes=num_classes, in_chans=in_chans,
|
||||
stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1,
|
||||
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs)
|
||||
model.default_cfg = default_cfg
|
||||
if pretrained:
|
||||
load_pretrained(model, default_cfg, num_classes, in_chans)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def resnest101e(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
||||
""" ResNeSt-101e model. Matches paper ResNeSt-101 model, https://arxiv.org/abs/2004.08955
|
||||
Since this codebase supports all possible variations, 'e' for deep stem, stem_width 64, avg in downsample.
|
||||
"""
|
||||
default_cfg = default_cfgs['resnest101e']
|
||||
model = ResNet(
|
||||
ResNestBottleneck, [3, 4, 23, 3], num_classes=num_classes, in_chans=in_chans,
|
||||
stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1,
|
||||
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs)
|
||||
model.default_cfg = default_cfg
|
||||
if pretrained:
|
||||
load_pretrained(model, default_cfg, num_classes, in_chans)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def resnest200e(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
||||
""" ResNeSt-200e model. Matches paper ResNeSt-200 model, https://arxiv.org/abs/2004.08955
|
||||
Since this codebase supports all possible variations, 'e' for deep stem, stem_width 64, avg in downsample.
|
||||
"""
|
||||
default_cfg = default_cfgs['resnest200e']
|
||||
model = ResNet(
|
||||
ResNestBottleneck, [3, 24, 36, 3], num_classes=num_classes, in_chans=in_chans,
|
||||
stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1,
|
||||
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs)
|
||||
model.default_cfg = default_cfg
|
||||
if pretrained:
|
||||
load_pretrained(model, default_cfg, num_classes, in_chans)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def resnest269e(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
||||
""" ResNeSt-269e model. Matches paper ResNeSt-269 model, https://arxiv.org/abs/2004.08955
|
||||
Since this codebase supports all possible variations, 'e' for deep stem, stem_width 64, avg in downsample.
|
||||
"""
|
||||
default_cfg = default_cfgs['resnest269e']
|
||||
model = ResNet(
|
||||
ResNestBottleneck, [3, 30, 48, 8], num_classes=num_classes, in_chans=in_chans,
|
||||
stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1,
|
||||
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs)
|
||||
model.default_cfg = default_cfg
|
||||
if pretrained:
|
||||
load_pretrained(model, default_cfg, num_classes, in_chans)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def resnest50d_4s2x40d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
||||
"""ResNeSt-50 4s2x40d from https://github.com/zhanghang1989/ResNeSt/blob/master/ablation.md
|
||||
"""
|
||||
default_cfg = default_cfgs['resnest50d_4s2x40d']
|
||||
model = ResNet(
|
||||
ResNestBottleneck, [3, 4, 6, 3], num_classes=num_classes, in_chans=in_chans,
|
||||
stem_type='deep', stem_width=32, avg_down=True, base_width=40, cardinality=2,
|
||||
block_args=dict(radix=4, avd=True, avd_first=True), **kwargs)
|
||||
model.default_cfg = default_cfg
|
||||
if pretrained:
|
||||
load_pretrained(model, default_cfg, num_classes, in_chans)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def resnest50d_1s4x24d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
||||
"""ResNeSt-50 1s4x24d from https://github.com/zhanghang1989/ResNeSt/blob/master/ablation.md
|
||||
"""
|
||||
default_cfg = default_cfgs['resnest50d_1s4x24d']
|
||||
model = ResNet(
|
||||
ResNestBottleneck, [3, 4, 6, 3], num_classes=num_classes, in_chans=in_chans,
|
||||
stem_type='deep', stem_width=32, avg_down=True, base_width=24, cardinality=4,
|
||||
block_args=dict(radix=1, avd=True, avd_first=True), **kwargs)
|
||||
model.default_cfg = default_cfg
|
||||
if pretrained:
|
||||
load_pretrained(model, default_cfg, num_classes, in_chans)
|
||||
return model
|
Loading…
Reference in new issue