diff --git a/README.md b/README.md index 47c65f53..a56e47a6 100644 --- a/README.md +++ b/README.md @@ -2,6 +2,10 @@ ## What's New +### Sept 18, 2020 +* New ResNet 'D' weights. 72.7 (top-1) ResNet-18-D, 77.1 ResNet-34-D, 80.5 ResNet-50-D +* Added a few untrained defs for other ResNet models (66D, 101D, 152D, 200/200D) + ### Sept 3, 2020 * New weights * Wide-ResNet50 - 81.5 top-1 (vs 78.5 torchvision) diff --git a/timm/models/resnet.py b/timm/models/resnet.py index fc86e960..c2cc55fd 100644 --- a/timm/models/resnet.py +++ b/timm/models/resnet.py @@ -35,26 +35,37 @@ def _cfg(url='', **kwargs): default_cfgs = { # ResNet and Wide ResNet 'resnet18': _cfg(url='https://download.pytorch.org/models/resnet18-5c106cde.pth'), + 'resnet18d': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet18d_ra2-48a79e06.pth', + interpolation='bicubic', first_conv='conv1.0'), 'resnet34': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34-43635321.pth'), + 'resnet34d': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34d_ra2-f8dcfcaf.pth', + interpolation='bicubic', first_conv='conv1.0'), 'resnet26': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26-9aa10e23.pth', interpolation='bicubic'), 'resnet26d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26d-69e92c46.pth', - interpolation='bicubic', - first_conv='conv1.0'), + interpolation='bicubic', first_conv='conv1.0'), 'resnet50': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50_ram-a26f946b.pth', interpolation='bicubic'), 'resnet50d': _cfg( - url='', - interpolation='bicubic', - first_conv='conv1.0'), - 'resnet101': _cfg(url='https://download.pytorch.org/models/resnet101-5d3b4d8f.pth'), - 'resnet152': _cfg(url='https://download.pytorch.org/models/resnet152-b121ed2d.pth'), + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50d_ra2-464e36ba.pth', + interpolation='bicubic', first_conv='conv1.0'), + 'resnet66d': _cfg(url='', interpolation='bicubic', first_conv='conv1.0'), + 'resnet101': _cfg(url='', interpolation='bicubic'), + 'resnet101d': _cfg(url='', interpolation='bicubic', first_conv='conv1.0'), + 'resnet152': _cfg(url='', interpolation='bicubic'), + 'resnet152d': _cfg(url='', interpolation='bicubic', first_conv='conv1.0'), + 'resnet200': _cfg(url='', interpolation='bicubic'), + 'resnet200d': _cfg(url='', interpolation='bicubic', first_conv='conv1.0'), 'tv_resnet34': _cfg(url='https://download.pytorch.org/models/resnet34-333f7ec4.pth'), 'tv_resnet50': _cfg(url='https://download.pytorch.org/models/resnet50-19c8e357.pth'), + 'tv_resnet101': _cfg(url='https://download.pytorch.org/models/resnet101-5d3b4d8f.pth'), + 'tv_resnet152': _cfg(url='https://download.pytorch.org/models/resnet152-b121ed2d.pth'), 'wide_resnet50_2': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/wide_resnet50_racm-8234f177.pth', interpolation='bicubic'), @@ -613,6 +624,15 @@ def resnet18(pretrained=False, **kwargs): return _create_resnet('resnet18', pretrained, **model_args) +@register_model +def resnet18d(pretrained=False, **kwargs): + """Constructs a ResNet-18-D model. + """ + model_args = dict( + block=BasicBlock, layers=[2, 2, 2, 2], stem_width=32, stem_type='deep', avg_down=True, **kwargs) + return _create_resnet('resnet18d', pretrained, **model_args) + + @register_model def resnet34(pretrained=False, **kwargs): """Constructs a ResNet-34 model. @@ -621,6 +641,15 @@ def resnet34(pretrained=False, **kwargs): return _create_resnet('resnet34', pretrained, **model_args) +@register_model +def resnet34d(pretrained=False, **kwargs): + """Constructs a ResNet-34-D model. + """ + model_args = dict( + block=BasicBlock, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs) + return _create_resnet('resnet34d', pretrained, **model_args) + + @register_model def resnet26(pretrained=False, **kwargs): """Constructs a ResNet-26 model. @@ -631,8 +660,7 @@ def resnet26(pretrained=False, **kwargs): @register_model def resnet26d(pretrained=False, **kwargs): - """Constructs a ResNet-26 v1d model. - This is technically a 28 layer ResNet, sticking with 'd' modifier from Gluon for now. + """Constructs a ResNet-26-D model. """ model_args = dict(block=Bottleneck, layers=[2, 2, 2, 2], stem_width=32, stem_type='deep', avg_down=True, **kwargs) return _create_resnet('resnet26d', pretrained, **model_args) @@ -655,6 +683,14 @@ def resnet50d(pretrained=False, **kwargs): return _create_resnet('resnet50d', pretrained, **model_args) +@register_model +def resnet66d(pretrained=False, **kwargs): + """Constructs a ResNet-66-D model. + """ + model_args = dict(block=BasicBlock, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs) + return _create_resnet('resnet66d', pretrained, **model_args) + + @register_model def resnet101(pretrained=False, **kwargs): """Constructs a ResNet-101 model. @@ -663,6 +699,14 @@ def resnet101(pretrained=False, **kwargs): return _create_resnet('resnet101', pretrained, **model_args) +@register_model +def resnet101d(pretrained=False, **kwargs): + """Constructs a ResNet-101-D model. + """ + model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs) + return _create_resnet('resnet101d', pretrained, **model_args) + + @register_model def resnet152(pretrained=False, **kwargs): """Constructs a ResNet-152 model. @@ -671,6 +715,32 @@ def resnet152(pretrained=False, **kwargs): return _create_resnet('resnet152', pretrained, **model_args) +@register_model +def resnet152d(pretrained=False, **kwargs): + """Constructs a ResNet-152-D model. + """ + model_args = dict( + block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs) + return _create_resnet('resnet152d', pretrained, **model_args) + + +@register_model +def resnet200(pretrained=False, **kwargs): + """Constructs a ResNet-200 model. + """ + model_args = dict(block=Bottleneck, layers=[3, 24, 36, 3], **kwargs) + return _create_resnet('resnet200', pretrained, **model_args) + + +@register_model +def resnet200d(pretrained=False, **kwargs): + """Constructs a ResNet-200-D model. + """ + model_args = dict( + block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs) + return _create_resnet('resnet200d', pretrained, **model_args) + + @register_model def tv_resnet34(pretrained=False, **kwargs): """Constructs a ResNet-34 model with original Torchvision weights. @@ -687,6 +757,22 @@ def tv_resnet50(pretrained=False, **kwargs): return _create_resnet('tv_resnet50', pretrained, **model_args) +@register_model +def tv_resnet101(pretrained=False, **kwargs): + """Constructs a ResNet-101 model w/ Torchvision pretrained weights. + """ + model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], **kwargs) + return _create_resnet('tv_resnet101', pretrained, **model_args) + + +@register_model +def tv_resnet152(pretrained=False, **kwargs): + """Constructs a ResNet-152 model w/ Torchvision pretrained weights. + """ + model_args = dict(block=Bottleneck, layers=[3, 8, 36, 3], **kwargs) + return _create_resnet('tv_resnet152', pretrained, **model_args) + + @register_model def wide_resnet50_2(pretrained=False, **kwargs): """Constructs a Wide ResNet-50-2 model.