diff --git a/README.md b/README.md index eaef67e8..62c93cce 100644 --- a/README.md +++ b/README.md @@ -2,6 +2,14 @@ ## What's New +### Feb 29, 2020 +* New MobileNet-V3 Large weights trained from stratch with this code to 75.77% top-1 +* IMPORTANT CHANGE - default weight init changed for all MobilenetV3 / EfficientNet / related models + * overall results similar to a bit better training from scratch on a few smaller models tried + * performance early in training seems consistently improved but less difference by end + * set `fix_group_fanout=False` in `_init_weight_goog` fn if you need to reproducte past behaviour +* Experimental LR noise feature added applies a random perturbation to LR each epoch in specified range of training + ### Feb 18, 2020 * Big refactor of model layers and addition of several attention mechanisms. Several additions motivated by 'Compounding the Performance Improvements...' (https://arxiv.org/abs/2001.06268): * Move layer/module impl into `layers` subfolder/module of `models` and organize in a more granular fashion @@ -187,7 +195,8 @@ I've leveraged the training scripts in this repository to train a few of the mod | skresnet34 | 76.912 (23.088) | 93.322 (6.678) | 22.2M | bicubic | 224 | | resnet26d | 76.68 (23.32) | 93.166 (6.834) | 16M | bicubic | 224 | | mixnet_s | 75.988 (24.012) | 92.794 (7.206) | 4.13M | bicubic | 224 | -| mobilenetv3_100 | 75.634 (24.366) | 92.708 (7.292) | 5.5M | bicubic | 224 | +| mobilenetv3_large_100 | 75.766 (24.234) | 92.542 (7.458) | 5.5M | bicubic | 224 | +| mobilenetv3_rw | 75.634 (24.366) | 92.708 (7.292) | 5.5M | bicubic | 224 | | mnasnet_a1 | 75.448 (24.552) | 92.604 (7.396) | 3.89M | bicubic | 224 | | resnet26 | 75.292 (24.708) | 92.57 (7.43) | 16M | bicubic | 224 | | fbnetc_100 | 75.124 (24.876) | 92.386 (7.614) | 5.6M | bilinear | 224 | @@ -361,6 +370,11 @@ Trained by [Andrew Lavin](https://github.com/andravin) with 8 V100 cards. Model `./distributed_train.sh 8 /imagenet --model efficientnet_es -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-connect 0.2 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .064` +### MobileNetV3-Large-100 - 75.766 top-1, 92,542 top-5 + +`./distributed_train.sh 2 /imagenet/ --model mobilenetv3_large_100 -b 512 --sched step --epochs 600 --decay-epochs 2.4 --decay-rate .973 --opt rmsproptf --opt-eps .001 -j 7 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-connect 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .064 --lr-noise 0.42 0.9` + + **TODO dig up some more** diff --git a/sotabench.py b/sotabench.py index 459993bd..7b896819 100644 --- a/sotabench.py +++ b/sotabench.py @@ -93,7 +93,7 @@ model_list = [ _entry('semnasnet_100', 'MnasNet-A1', '1807.11626'), _entry('spnasnet_100', 'Single-Path NAS', '1904.02877', model_desc='Trained in PyTorch with SGD, cosine LR decay'), - _entry('mobilenetv3_rw', 'MobileNet V3-Large 1.0', '1905.02244', + _entry('mobilenetv3_large_100', 'MobileNet V3-Large 1.0', '1905.02244', model_desc='Trained in PyTorch with RMSProp, exponential LR decay, and hyper-params matching ' 'paper as closely as possible.'), diff --git a/timm/models/mobilenetv3.py b/timm/models/mobilenetv3.py index 39391c56..fe90767c 100644 --- a/timm/models/mobilenetv3.py +++ b/timm/models/mobilenetv3.py @@ -31,7 +31,9 @@ def _cfg(url='', **kwargs): default_cfgs = { 'mobilenetv3_large_075': _cfg(url=''), - 'mobilenetv3_large_100': _cfg(url=''), + 'mobilenetv3_large_100': _cfg( + interpolation='bicubic', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth'), 'mobilenetv3_small_075': _cfg(url=''), 'mobilenetv3_small_100': _cfg(url=''), 'mobilenetv3_rw': _cfg( diff --git a/timm/scheduler/scheduler_factory.py b/timm/scheduler/scheduler_factory.py index ffe858ad..2320c96b 100644 --- a/timm/scheduler/scheduler_factory.py +++ b/timm/scheduler/scheduler_factory.py @@ -10,9 +10,10 @@ def create_scheduler(args, optimizer): if args.lr_noise is not None: if isinstance(args.lr_noise, (list, tuple)): noise_range = [n * num_epochs for n in args.lr_noise] + if len(noise_range) == 1: + noise_range = noise_range[0] else: noise_range = args.lr_noise * num_epochs - print('Noise range:', noise_range) else: noise_range = None