|
|
|
@ -1,5 +1,12 @@
|
|
|
|
|
""" Mixup
|
|
|
|
|
Paper: `mixup: Beyond Empirical Risk Minimization` - https://arxiv.org/abs/1710.09412
|
|
|
|
|
""" Mixup and Cutmix
|
|
|
|
|
|
|
|
|
|
Papers:
|
|
|
|
|
mixup: Beyond Empirical Risk Minimization (https://arxiv.org/abs/1710.09412)
|
|
|
|
|
|
|
|
|
|
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features (https://arxiv.org/abs/1905.04899)
|
|
|
|
|
|
|
|
|
|
Code Reference:
|
|
|
|
|
CutMix: https://github.com/clovaai/CutMix-PyTorch
|
|
|
|
|
|
|
|
|
|
Hacked together by / Copyright 2020 Ross Wightman
|
|
|
|
|
"""
|
|
|
|
@ -17,40 +24,230 @@ def mixup_target(target, num_classes, lam=1., smoothing=0.0, device='cuda'):
|
|
|
|
|
on_value = 1. - smoothing + off_value
|
|
|
|
|
y1 = one_hot(target, num_classes, on_value=on_value, off_value=off_value, device=device)
|
|
|
|
|
y2 = one_hot(target.flip(0), num_classes, on_value=on_value, off_value=off_value, device=device)
|
|
|
|
|
return lam*y1 + (1. - lam)*y2
|
|
|
|
|
return y1 * lam + y2 * (1. - lam)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def rand_bbox(img_shape, lam, margin=0., count=None):
|
|
|
|
|
""" Standard CutMix bounding-box
|
|
|
|
|
Generates a random square bbox based on lambda value. This impl includes
|
|
|
|
|
support for enforcing a border margin as percent of bbox dimensions.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
img_shape (tuple): Image shape as tuple
|
|
|
|
|
lam (float): Cutmix lambda value
|
|
|
|
|
margin (float): Percentage of bbox dimension to enforce as margin (reduce amount of box outside image)
|
|
|
|
|
count (int): Number of bbox to generate
|
|
|
|
|
"""
|
|
|
|
|
ratio = np.sqrt(1 - lam)
|
|
|
|
|
img_h, img_w = img_shape[-2:]
|
|
|
|
|
cut_h, cut_w = int(img_h * ratio), int(img_w * ratio)
|
|
|
|
|
margin_y, margin_x = int(margin * cut_h), int(margin * cut_w)
|
|
|
|
|
cy = np.random.randint(0 + margin_y, img_h - margin_y, size=count)
|
|
|
|
|
cx = np.random.randint(0 + margin_x, img_w - margin_x, size=count)
|
|
|
|
|
yl = np.clip(cy - cut_h // 2, 0, img_h)
|
|
|
|
|
yh = np.clip(cy + cut_h // 2, 0, img_h)
|
|
|
|
|
xl = np.clip(cx - cut_w // 2, 0, img_w)
|
|
|
|
|
xh = np.clip(cx + cut_w // 2, 0, img_w)
|
|
|
|
|
return yl, yh, xl, xh
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def rand_bbox_minmax(img_shape, minmax, count=None):
|
|
|
|
|
""" Min-Max CutMix bounding-box
|
|
|
|
|
Inspired by Darknet cutmix impl, generates a random rectangular bbox
|
|
|
|
|
based on min/max percent values applied to each dimension of the input image.
|
|
|
|
|
|
|
|
|
|
Typical defaults for minmax are usually in the .2-.3 for min and .8-.9 range for max.
|
|
|
|
|
|
|
|
|
|
def mixup_batch(input, target, alpha=0.2, num_classes=1000, smoothing=0.1, disable=False):
|
|
|
|
|
lam = 1.
|
|
|
|
|
if not disable:
|
|
|
|
|
lam = np.random.beta(alpha, alpha)
|
|
|
|
|
input = input.mul(lam).add_(1 - lam, input.flip(0))
|
|
|
|
|
target = mixup_target(target, num_classes, lam, smoothing)
|
|
|
|
|
return input, target
|
|
|
|
|
Args:
|
|
|
|
|
img_shape (tuple): Image shape as tuple
|
|
|
|
|
minmax (tuple or list): Min and max bbox ratios (as percent of image size)
|
|
|
|
|
count (int): Number of bbox to generate
|
|
|
|
|
"""
|
|
|
|
|
assert len(minmax) == 2
|
|
|
|
|
img_h, img_w = img_shape[-2:]
|
|
|
|
|
cut_h = np.random.randint(int(img_h * minmax[0]), int(img_h * minmax[1]), size=count)
|
|
|
|
|
cut_w = np.random.randint(int(img_w * minmax[0]), int(img_w * minmax[1]), size=count)
|
|
|
|
|
yl = np.random.randint(0, img_h - cut_h, size=count)
|
|
|
|
|
xl = np.random.randint(0, img_w - cut_w, size=count)
|
|
|
|
|
yu = yl + cut_h
|
|
|
|
|
xu = xl + cut_w
|
|
|
|
|
return yl, yu, xl, xu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class FastCollateMixup:
|
|
|
|
|
def cutmix_bbox_and_lam(img_shape, lam, ratio_minmax=None, correct_lam=True, count=None):
|
|
|
|
|
""" Generate bbox and apply lambda correction.
|
|
|
|
|
"""
|
|
|
|
|
if ratio_minmax is not None:
|
|
|
|
|
yl, yu, xl, xu = rand_bbox_minmax(img_shape, ratio_minmax, count=count)
|
|
|
|
|
else:
|
|
|
|
|
yl, yu, xl, xu = rand_bbox(img_shape, lam, count=count)
|
|
|
|
|
if correct_lam or ratio_minmax is not None:
|
|
|
|
|
bbox_area = (yu - yl) * (xu - xl)
|
|
|
|
|
lam = 1. - bbox_area / float(img_shape[-2] * img_shape[-1])
|
|
|
|
|
return (yl, yu, xl, xu), lam
|
|
|
|
|
|
|
|
|
|
def __init__(self, mixup_alpha=1., label_smoothing=0.1, num_classes=1000):
|
|
|
|
|
|
|
|
|
|
class Mixup:
|
|
|
|
|
""" Mixup/Cutmix that applies different params to each element or whole batch
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
mixup_alpha (float): mixup alpha value, mixup is active if > 0.
|
|
|
|
|
cutmix_alpha (float): cutmix alpha value, cutmix is active if > 0.
|
|
|
|
|
cutmix_minmax (List[float]): cutmix min/max image ratio, cutmix is active and uses this vs alpha if not None.
|
|
|
|
|
prob (float): probability of applying mixup or cutmix per batch or element
|
|
|
|
|
switch_prob (float): probability of switching to cutmix instead of mixup when both are active
|
|
|
|
|
elementwise (bool): apply mixup/cutmix params per batch element instead of per batch
|
|
|
|
|
correct_lam (bool): apply lambda correction when cutmix bbox clipped by image borders
|
|
|
|
|
label_smoothing (float): apply label smoothing to the mixed target tensor
|
|
|
|
|
num_classes (int): number of classes for target
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self, mixup_alpha=1., cutmix_alpha=0., cutmix_minmax=None, prob=1.0, switch_prob=0.5,
|
|
|
|
|
elementwise=False, correct_lam=True, label_smoothing=0.1, num_classes=1000):
|
|
|
|
|
self.mixup_alpha = mixup_alpha
|
|
|
|
|
self.cutmix_alpha = cutmix_alpha
|
|
|
|
|
self.cutmix_minmax = cutmix_minmax
|
|
|
|
|
if self.cutmix_minmax is not None:
|
|
|
|
|
assert len(self.cutmix_minmax) == 2
|
|
|
|
|
# force cutmix alpha == 1.0 when minmax active to keep logic simple & safe
|
|
|
|
|
self.cutmix_alpha = 1.0
|
|
|
|
|
self.mix_prob = prob
|
|
|
|
|
self.switch_prob = switch_prob
|
|
|
|
|
self.label_smoothing = label_smoothing
|
|
|
|
|
self.num_classes = num_classes
|
|
|
|
|
self.mixup_enabled = True
|
|
|
|
|
self.elementwise = elementwise
|
|
|
|
|
self.correct_lam = correct_lam # correct lambda based on clipped area for cutmix
|
|
|
|
|
self.mixup_enabled = True # set to false to disable mixing (intended tp be set by train loop)
|
|
|
|
|
|
|
|
|
|
def __call__(self, batch):
|
|
|
|
|
batch_size = len(batch)
|
|
|
|
|
lam = 1.
|
|
|
|
|
def _params_per_elem(self, batch_size):
|
|
|
|
|
lam = np.ones(batch_size, dtype=np.float32)
|
|
|
|
|
use_cutmix = np.zeros(batch_size, dtype=np.bool)
|
|
|
|
|
if self.mixup_enabled:
|
|
|
|
|
lam = np.random.beta(self.mixup_alpha, self.mixup_alpha)
|
|
|
|
|
if self.mixup_alpha > 0. and self.cutmix_alpha > 0.:
|
|
|
|
|
use_cutmix = np.random.rand(batch_size) < self.switch_prob
|
|
|
|
|
lam_mix = np.where(
|
|
|
|
|
use_cutmix,
|
|
|
|
|
np.random.beta(self.cutmix_alpha, self.cutmix_alpha, size=batch_size),
|
|
|
|
|
np.random.beta(self.mixup_alpha, self.mixup_alpha, size=batch_size))
|
|
|
|
|
elif self.mixup_alpha > 0.:
|
|
|
|
|
lam_mix = np.random.beta(self.mixup_alpha, self.mixup_alpha, size=batch_size)
|
|
|
|
|
elif self.cutmix_alpha > 0.:
|
|
|
|
|
use_cutmix = np.ones(batch_size, dtype=np.bool)
|
|
|
|
|
lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha, size=batch_size)
|
|
|
|
|
else:
|
|
|
|
|
assert False, "One of mixup_alpha > 0., cutmix_alpha > 0., cutmix_minmax not None should be true."
|
|
|
|
|
lam = np.where(np.random.rand(batch_size) < self.mix_prob, lam_mix.astype(np.float32), lam)
|
|
|
|
|
return lam, use_cutmix
|
|
|
|
|
|
|
|
|
|
target = torch.tensor([b[1] for b in batch], dtype=torch.int64)
|
|
|
|
|
target = mixup_target(target, self.num_classes, lam, self.label_smoothing, device='cpu')
|
|
|
|
|
def _params_per_batch(self):
|
|
|
|
|
lam = 1.
|
|
|
|
|
use_cutmix = False
|
|
|
|
|
if self.mixup_enabled and np.random.rand() < self.mix_prob:
|
|
|
|
|
if self.mixup_alpha > 0. and self.cutmix_alpha > 0.:
|
|
|
|
|
use_cutmix = np.random.rand() < self.switch_prob
|
|
|
|
|
lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha) if use_cutmix else \
|
|
|
|
|
np.random.beta(self.mixup_alpha, self.mixup_alpha)
|
|
|
|
|
elif self.mixup_alpha > 0.:
|
|
|
|
|
lam_mix = np.random.beta(self.mixup_alpha, self.mixup_alpha)
|
|
|
|
|
elif self.cutmix_alpha > 0.:
|
|
|
|
|
use_cutmix = True
|
|
|
|
|
lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha)
|
|
|
|
|
else:
|
|
|
|
|
assert False, "One of mixup_alpha > 0., cutmix_alpha > 0., cutmix_minmax not None should be true."
|
|
|
|
|
lam = float(lam_mix)
|
|
|
|
|
return lam, use_cutmix
|
|
|
|
|
|
|
|
|
|
tensor = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8)
|
|
|
|
|
def _mix_elem(self, x):
|
|
|
|
|
batch_size = len(x)
|
|
|
|
|
lam_batch, use_cutmix = self._params_per_elem(batch_size)
|
|
|
|
|
x_orig = x.clone() # need to keep an unmodified original for mixing source
|
|
|
|
|
for i in range(batch_size):
|
|
|
|
|
mixed = batch[i][0].astype(np.float32) * lam + \
|
|
|
|
|
batch[batch_size - i - 1][0].astype(np.float32) * (1 - lam)
|
|
|
|
|
np.round(mixed, out=mixed)
|
|
|
|
|
tensor[i] += torch.from_numpy(mixed.astype(np.uint8))
|
|
|
|
|
j = batch_size - i - 1
|
|
|
|
|
lam = lam_batch[i]
|
|
|
|
|
if lam != 1.:
|
|
|
|
|
if use_cutmix[i]:
|
|
|
|
|
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam(
|
|
|
|
|
x[i].shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam)
|
|
|
|
|
x[i][:, yl:yh, xl:xh] = x_orig[j][:, yl:yh, xl:xh]
|
|
|
|
|
lam_batch[i] = lam
|
|
|
|
|
else:
|
|
|
|
|
x[i] = x[i] * lam + x_orig[j] * (1 - lam)
|
|
|
|
|
return torch.tensor(lam_batch, device=x.device, dtype=x.dtype).unsqueeze(1)
|
|
|
|
|
|
|
|
|
|
def _mix_batch(self, x):
|
|
|
|
|
lam, use_cutmix = self._params_per_batch()
|
|
|
|
|
if lam == 1.:
|
|
|
|
|
return 1.
|
|
|
|
|
if use_cutmix:
|
|
|
|
|
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam(
|
|
|
|
|
x.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam)
|
|
|
|
|
x[:, :, yl:yh, xl:xh] = x.flip(0)[:, :, yl:yh, xl:xh]
|
|
|
|
|
else:
|
|
|
|
|
x_flipped = x.flip(0).mul_(1. - lam)
|
|
|
|
|
x.mul_(lam).add_(x_flipped)
|
|
|
|
|
return lam
|
|
|
|
|
|
|
|
|
|
def __call__(self, x, target):
|
|
|
|
|
assert len(x) % 2 == 0, 'Batch size should be even when using this'
|
|
|
|
|
lam = self._mix_elem(x) if self.elementwise else self._mix_batch(x)
|
|
|
|
|
target = mixup_target(target, self.num_classes, lam, self.label_smoothing)
|
|
|
|
|
return x, target
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class FastCollateMixup(Mixup):
|
|
|
|
|
""" Fast Collate w/ Mixup/Cutmix that applies different params to each element or whole batch
|
|
|
|
|
|
|
|
|
|
A Mixup impl that's performed while collating the batches.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def _mix_elem_collate(self, output, batch):
|
|
|
|
|
batch_size = len(batch)
|
|
|
|
|
lam_batch, use_cutmix = self._params_per_elem(batch_size)
|
|
|
|
|
for i in range(batch_size):
|
|
|
|
|
j = batch_size - i - 1
|
|
|
|
|
lam = lam_batch[i]
|
|
|
|
|
mixed = batch[i][0]
|
|
|
|
|
if lam != 1.:
|
|
|
|
|
if use_cutmix[i]:
|
|
|
|
|
mixed = mixed.copy()
|
|
|
|
|
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam(
|
|
|
|
|
output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam)
|
|
|
|
|
mixed[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh]
|
|
|
|
|
lam_batch[i] = lam
|
|
|
|
|
else:
|
|
|
|
|
mixed = mixed.astype(np.float32) * lam + batch[j][0].astype(np.float32) * (1 - lam)
|
|
|
|
|
lam_batch[i] = lam
|
|
|
|
|
np.round(mixed, out=mixed)
|
|
|
|
|
output[i] += torch.from_numpy(mixed.astype(np.uint8))
|
|
|
|
|
return torch.tensor(lam_batch).unsqueeze(1)
|
|
|
|
|
|
|
|
|
|
def _mix_batch_collate(self, output, batch):
|
|
|
|
|
batch_size = len(batch)
|
|
|
|
|
lam, use_cutmix = self._params_per_batch()
|
|
|
|
|
if use_cutmix:
|
|
|
|
|
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam(
|
|
|
|
|
output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam)
|
|
|
|
|
for i in range(batch_size):
|
|
|
|
|
j = batch_size - i - 1
|
|
|
|
|
mixed = batch[i][0]
|
|
|
|
|
if lam != 1.:
|
|
|
|
|
if use_cutmix:
|
|
|
|
|
mixed = mixed.copy() # don't want to modify the original while iterating
|
|
|
|
|
mixed[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh]
|
|
|
|
|
else:
|
|
|
|
|
mixed = mixed.astype(np.float32) * lam + batch[j][0].astype(np.float32) * (1 - lam)
|
|
|
|
|
np.round(mixed, out=mixed)
|
|
|
|
|
output[i] += torch.from_numpy(mixed.astype(np.uint8))
|
|
|
|
|
return lam
|
|
|
|
|
|
|
|
|
|
def __call__(self, batch, _=None):
|
|
|
|
|
batch_size = len(batch)
|
|
|
|
|
assert batch_size % 2 == 0, 'Batch size should be even when using this'
|
|
|
|
|
output = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8)
|
|
|
|
|
if self.elementwise:
|
|
|
|
|
lam = self._mix_elem_collate(output, batch)
|
|
|
|
|
else:
|
|
|
|
|
lam = self._mix_batch_collate(output, batch)
|
|
|
|
|
target = torch.tensor([b[1] for b in batch], dtype=torch.int64)
|
|
|
|
|
target = mixup_target(target, self.num_classes, lam, self.label_smoothing, device='cpu')
|
|
|
|
|
return output, target
|
|
|
|
|
|
|
|
|
|
return tensor, target
|
|
|
|
|